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Abstract 

In this essay I explore the use of theme, plot and motif to help students construct 

meaning for themselves and then transmit that meaning in their written solutions. 

Narrative principles are also used as vehicles to introduce students to the concept of 

“expertise” in problem solving as well as various results from Physics Education 

Research and, most importantly, the conceptual economies of what is known in 

cognitive science as the narrative effect. 
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1. Introduction 

Boy meets girl, so what?  

screenplay by Bertolt Brecht 

 

The epigrammatic title of Brecht’s screenplay neatly captures the cognitive economies that 

are the heart of this essay: three words in one actional phrase (“boy meets girl”) summarize much 

of the canon of Western Literature (and most of the non-canonical literature as well). There have 

been several influential studies detailing the limited number of plots in literature: Vladimir 

Propp’s analysis of Russian folk tales uncovers 31 basic plot components that almost always 

occur in all of the tales, and in the same order. (Propp, 1968) Equally influential is Tobias’ 20 

Master Plots (Tobias, 2011), listed below. 

Quest Adventure Pursuit Rescue 
Escape Revenge The Riddle Rivalry 
Underdog Temptation Metamorphosis Transformation 
Maturation Love Forbidden Love Sacrifice 
Discovery Wretched Excess Ascension Descension 
 

Plot refers to the structure of the story—the organization of events that make up a story and 

how they are related to and interact with one another. Shakespeare’s Hamlet is a revenge plot; the 

theme of this play, however, is indecision. Theme is the central topic or concept of a story, and 

while debates rage as to whether themes can be specified by a single noun (power) or a verbal 

phrase (power corrupts), their number is limited, and this should come as no surprise: human 

experience is nothing if not repetitive, and at any rate fundamental cognitive processes demand 

that we categorize to reduce multiplicity: 

It is easier to organize knowledge and behavior if the vast realms of experience 
are subdivided; indeed, the world would quickly become unmanageable if I had 
to sort through every possible concept and potential course of action at every 
given moment. (Herman 2003, 136) 

Reducing “the vast realms” by categorization is also central to the scientific enterprise: there 

are a limited number of archetypal problems and corresponding solutions—what Thomas Kuhn 
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terms exemplars (Kuhn 1970, 187)—and successful scientists and their students have somehow 

come to recognize this economy. There are literally thousands of end-of-chapter problems in a 

standard undergraduate physics textbook, the taxonomy and solution methods of which provide 

the most important formative experience in science education. The successful student’s ability to 

reduce the thousands to several exemplars is a form of tacit knowledge acquired by doing science. 

My objective is to use narratives to reveal this tacit knowledge to students who may otherwise 

continue to labour under the illusion that there really are thousands of problems—in fact there are 

but a few themes and a handful of plot variations. 

According to Kuhn’s well know historiography, scientists spend the majority, if not all, of 

their professional lives attempting to find answers to various problems, an activity that he 

characterizes as puzzle solving. (Ibid. 35) The puzzles themselves (and indeed their method of 

solution) are provided by the reigning paradigm. Science students gain implicit knowledge about 

scientific research as they hone their puzzle-solving skills, testing their ingenuity against 

problems found in standardized physics, mathematics and chemistry textbooks. The activities of 

problem solving and the writing of solutions are exemplary of how research proceeds and how 

research papers are constructed—they are central to the scientific enterprise itself. 

While much work has been done in recent years on the teaching of conceptual physics1 and 

problem solving there has been scant attention paid to the manner in which students communicate 

their conceptual understanding in written solutions. Too often students rush headlong toward the 

perceived end, plugging numbers into what may or may not be appropriate equations, a habit 

reinforced by marking schemes that privilege final answers at the expense of the communication 

of ideas. Those of us who continued to graduate work in science developed a feel for the 

conventions of good solutions, absorbing the lessons from examples in lectures and textbooks (as 

Saul Bellow put it, “a writer is a reader moved to emulation”2). We know how to construct good 

                                                        
1 See, for example, McDermott et al. 1996; Eric Mazur 1997; Crouch and Mazur 2001. 
2 attributed 
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problem solutions, using a logical format that transmits meaningful information to the reader. As 

teachers we model good solution writing and ask that the students emulate these models in their 

own solutions. But the models are presented in a final, polished form, like Athena leaping fully-

grown from Zeus' head: students are not taught strategies for developing and crafting their own 

solutions, and so the problem of poor communication persists, along with a fixation on the final 

answer. I believe that the problem-solving and solution-writing habits of successful science 

students and scientists can indeed be taught and that such instruction should be an explicit part of 

the science curriculum. If essay writing can be taught in the Humanities (and it is, often quite 

well) then we can and should teach the corresponding fundamental skill in the Sciences. 

Two Examples 

Two exemplary marking experiences frame this investigation. The first—submitted on a 

test—is a solution to a standard kinematics question: find the time of flight for an object launched 

directly upward with an initial speed v0. The rather terse student solution looked something like 

the following: 

 

The answer, of course, is correct: the total time of flight is indeed twice the time to the 

maximum height, and at this maximum height the velocity is zero. But this explanation was 

entirely absent, and in its absence, I discovered, I had assumed that the student well understood 

the concepts and method of solution involved. The student came to see me in my office to discuss 

other issues with his test and I pointed out the shortcomings in his solution, to which he replied 

something along the lines: ”Oh yah, but it’s obvious, v is zero when it hits the ground . . .” I 

cannot recall the rest of what was said in this brief discussion (what is termed in the literature a 

“think aloud protocol”), but I had heard enough to be convinced that the student deserved a mark 
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of 0 on this problem: clearly his conceptual understanding was nil, he was merely following what 

are termed “novice habits” of working backward from the given data, plugging known values into 

an equation to obtain an answer (the distinction between expert and novice problem solvers will 

be discussed in detail in Section 3). 

In the course material the student had no doubt encountered a solution that looked very much 

like his own, but such a solution would have been accompanied (one hopes) by explanations: a 

diagram, brief remarks, numbered equations, etc.—in short, a solution that transmits meaning 

rather than just a result. Within the student’s brief (and now incorrect) solution there are 

fragments of conceptual clarity: he did multiply the time by 2, but what time did he think he was 

multiplying? The arrow showing that v = 0 m/s is a useful semiotic device (that is, it 

communicates meaning—Section 4) but unfortunately I assumed a meaning that he had neither 

intended nor understood.  

A second marking experience is vastly preferable to the first:  
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If you are a physics teacher (and had been marking 30 different student solutions to this same 

question for the last hour) you could probably grade this in under three seconds. Although lacking 

any explanatory text, the student’s use of what I term annotation, punctuation and appropriate 

page setup allow one to practically inhale the solution as a whole (I will discuss solution 

templates in Section 4).  Such an organized presentation of ideas is, for me, a species of narrative. 

Why Narrative 

Narrative is not a choice, not a chosen medium or method, rather it is intimately linked to 

fundamental notions of causality, how time unravels in one direction only. We seem to require 

narratives to make sense of our world, to understand events and our relations to them. In listening 
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to news we need to identify fundamental plots of good versus evil, someone wronged, a crime in 

need of resolution, retribution, a catastrophe and its consequences. 

In everyday life people incorporate stories into a wide range of activities. Stories 
enable humans to carry out spontaneous conversations, make sense of news 
reports in a variety of media, produce and interpret literary texts, create and 
assess medical case histories, and provide testimony in court (Herman 2003, 133-
4) 

Although not myself a born storyteller I have noted the compelling power of narrative in the 

lecture hall: the ability to obtain, for some brief minutes, the absorbed attention of a class by 

stringing together ideas to somehow craft a story; I recall discussing the origin of number as 

ordinal usage in ceremony rather than cardinal usage in, for example, commerce (everyone loves 

a good distinction, in this case an adult education class of inner-city teenage dropouts); every 

semester I find an excuse to deliver my  “in the beginning there was hydrogen” lecture—a 

scientific creation myth. I explain that the pair-wise gravitational force between hydrogen atoms 

in an immense primordial gas cloud gives rise to a rotational motion. Stars form by a process of 

accretion and, as they age, produce heavier elements, eventually leading to a supernova explosion 

that spews elements out into the void: “we are all star dust,” as Isaac Asimov has said. In a few 

short minutes students have construed a connection between the big bang, Newton’s Laws, the 

conservation of angular momentum, nuclear fusion and relativistic energy, and galactic, stellar 

and planetary formation and motions. 

cognition: the narrative effect 

The ability of narrative to command our attention comes as no surprise: we need stories, we 

love stories, they are an essential part of childhood, of our induction into the world, transmitting 

the skills of reading and listening and what is broadly termed culture. But more than that, 

cognitive psychologists have identified the fundamental role that narrative plays in our 

interaction, understanding and indeed construction of reality (see, for example, Bruner 1991). 

Narrative allows us to understand the world around us, to achieve clarity and to inflict order: 

narrative is a fundamental cognitive activity. 
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Let me say from the outset that my educational trajectory has left me somewhat deficient in 

the field of cognitive semiotics. But even a cursory perusal of the literature leaves one convinced 

of the power of narrative to organize our experience and ideas: from a plethora of possible 

citations to justify the cognitive priority of narratives I have chosen the following declaration by 

renowned cognitive psychologist Jerome Bruner: 

. . . it is very likely the case that the most natural and the earliest way in which 
we organize our experience and our knowledge is in terms of narrative form.” 
(Bruner 1996, 121) 

Why does narrative play such an important role in cognition? To paraphrase George Bernard 

Shaw’s comment about economists, if you lay all narrative theorists end to end they would not 

reach a conclusion: 

It remains somewhat of a mystery why narrative text is so easy to comprehend 
and remember. Perhaps it is because the content of narrative text has such a close 
correspondence with everyday experiences. Perhaps it is because the language of 
oral conversation has a closer similarity to narrative text than other discourse 
genres. Perhaps it is because there are more vivid mental images, or a more 
elegant composition of the conceptual structures. (Graesser 2002, 16-17) 

Whatever the cause, there is much evidence for narrative’s cognitive power:  

. . . there is research showing that narrative passages are read faster, 
comprehended better, and tend to be more absorbing than expository passages 
and perhaps than other genres as well . . . a good narrative can increase the 
plausibility and persuasiveness of information presented, a finding that would be 
important for science education, which places considerable emphasis on 
information. It has also been found that narrative passages positively affect 
memory . . . and that readers apply themselves more when reading narrative 
compared to expository prose. (Norris et al. 2005, 553-4) 

. . . we organize our experience and our memory of human happenings mainly in 
the form of narrative—stories, excuses, myths, reasons for doing and not doing, 
and so on.” (Bruner 1987, 4)  

. . . skill in narrative construction and narrative understanding is crucial to 
constructing our lives and a "place" for ourselves in the possible world we will 
encounter. (Bruner 1996, 40) 

narratives in science 

Narrative is not normally associated with the sciences, but nor is it exclusive to any one 

domain: many humanistic fields of inquiry, from Film Studies to Musicology and—as one would 
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expect—Literary Studies, use narrative theory in the analyses of film, music and literature, 

respectively (see, for example, Branigan 1992; Mauss 1991). Narrative is ubiquitous, a necessary 

part of the human experience: 

Narrative has existed in every known human society. Like metaphor, it seems to 
be everywhere: sometimes active and obvious, at other times fragmentary, 
dormant, and tacit. We encounter is not just in novels and conversation but also 
as we look around a room, wonder about an event, or think about what to do 
next. One of the important ways we perceive our environment is by anticipating 
and telling ourselves mini-stories about that environment based on stories already 
told. Making narratives is a strategy for making our world of experience and 
desires intelligible. It is a fundamental way of organizing data. (Branigan 1992, 
1) 

In what sense can Science use narratives? I believe there to be three fundamental areas in 

which narrative processes are involved: scientific theories, how we discover and teach these 

theories, and the “spectrum of tasks that are called problems” (Maloney 2011, 3). For students 

and teachers alike the three are inevitably fused: I must briefly dispense with the first two, each of 

which could easily occupy a lifetime of research, for the third is the very subject of this essay.  

The fundamental cognitive role of narrative leads one to expect that it play a vital role in the 

creation, elaboration, transmission and understanding of scientific theories: “narrative is 

indivisibly fused with the theoretical enterprise . . . all theories tell a story.” (Hoffman 2005, 310) 

Bruner is interested in enlivening science education by explicitly acknowledging the role of 

narrative in the creation of finished scientific theories:  

The process of science is narrative. It consists of spinning hypotheses about 
nature, testing them, correcting the hypotheses, and getting one’s head straight . . 
. we play with ideas, try to create anomalies, try to find neat puzzle forms that we 
can apply to intractable troubles so that they can be turned into soluble problems” 
(Bruner 1996, 127) 

To this end he calls for the emphasis in the classroom to be placed “back on the process of 

science problem solving rather than upon the finished science and “the answers.” (Ibid.) Millar 

and Osborne (1998, 2013) propose that science education “make greater use of one of the world’s 

most powerful and pervasive ways of communicating ideas—the narrative form.” Narrative 

excels at “communicating ideas, and in making ideas coherent, memorable, and meaningful.” 
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(Ibid.) The narrative emphasis on interrelated sets of ideas stands in stark contrast to the 

conventional delivery of science curriculum where one focuses on ideas in isolation, thereby 

obscuring the major themes of the science.  

And now to the third usage of narrative in science, namely problem solving: What precisely 

do I mean by the term narrative in the context of problem solving and solution writing? Does it 

refer to the form of a final written solution or the process of solving the problem? As will be seen 

it is impossible to separate these two processes in science, and indeed we need not and should not 

do so: “the word ‘narrative’ may refer to either the product of storytelling or to its process of 

construction.” (Branigan 1992, 3) Thus in this study I will term the entirety—from reading the 

problem to penning a complete solution—a problem solution. In the following I propose the use 

of narrative as means to teach effective problem solution. 
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2. Narrative Problem Solutions 

The approach outlined here provides a framework for studying how stories enhance core 
problem-solving abilities in a variety of communicative contexts, nonliterary as well as literary.3 

David Herman, How Stories Make us Smarter: Narrative Theory And Cognitive 
Semiotics 

 

Problem Solution in the Lecture Hall: The Lie 

problem versus exercise 

What do we mean when we refer to a problem? What is problem solving? Sometimes a 

statement of the obvious is a useful starting place: “problem solving is what you do when you 

don’t know what to do.” (Wheatley 1984) And what of the term problem? There exist any 

number of definitions of this term, and while no one is universally accepted the following, from 

Hayes, captures many of the issues that occupy us here:  

Whenever there is a gap between where you are now and where you want to be, 
and you don't know how to find a way to cross that gap, you have a problem. 
(Hayes, 1980; as quoted in Bodner 1987, 513) 

Put another way (see Mayer, 1992), the problem is presently in some state, it is desired that 

the problem be in another state and there is no direct, obvious way to accomplish the change. 

Many end-of-chapter questions put students in just such a cognitively productive predicament, 

but not all of them do, leading to the fruitful distinction between a problem and an exercise. 

Simply put, if you know what to do, it’s an exercise, possibly what is derisively known as a plug-

and-chug question. Textbook authors and publishers use this distinction to organize end-of-

chapter work into Exercises and Problems, and rare is the textbook that does not follow this 

sequence. 

When confronted with a real problem, then, initially one does not know what to do. How 

should one begin? I’ve always told students: “If you don’t know what to do, do what you know 

                                                        
3  Hermann, 155 
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and see where it leads.” To be sure more rigorous procedures for problem solving abound in the 

literature, and of these the mathematician Polya’s four-step procedure is a frequent point of 

departure (Polya 1945): 

1. Understanding the problem: here the solver gathers information. 

2. Devising a plan: when this phase is reached the problem solver tries to use past 

experience to find a method of solution. 

3. Carrying out the plan: the problem solver tries out the plan of solution. 

4. Looking back: during this final phase the problem solver tries to check the result 

by using another method or by seeing how it all fits together. 

The pedagogical issue I would like to address is as follows: what is a real problem for 

students has become, for teachers, a mere exercise: 

Status as a problem is not an innate characteristic of a question; it is, rather, a 
subtle interaction between the question and the individual trying to answer the 
question. It is a reflection of experience with that type of question more than 
intellectual ability. (Bodner 1987, 513).  

When we model problem solving in a lecture we are rather showing an algorithm for solving an 

exercise and not following either Polya’s procedure or our own expert procedures when 

confronted by what is truly a problem. 

the lie (the gap between problem solving and presenting the solution) 

 And so it is that teachers tend to present problem solutions in lectures as a fait accompli: in 

other words the teachers themselves have already performed the conceptual work required to 

reduce the problem to an exercise and then, in what I	
   term The Lie, present this exercise to the 

class as a model of problem solution. The post facto nature of lecture problem-solving is 

summarized by Bodner: 

In virtually every recitation section, the students asked the TA to do this problem. 
Time and time again, the TA's told the students that the problem could be worked 
more or less like this: 

Start by converting grams of AgBr into moles of AgBr. Convert moles of AgBr 
into moles of Br, and then convert moles of Br into grams of Br. Subtract grams 
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of Br from grams of indium bromide to give grams of In. Convert grams of In 
into moles of In. Then divide moles of Br by moles of In to get the empirical 
formula of the compound.  

During the next staff meeting, I asked my TA's to stop lying to the students. I 
suggested that (1) the technique for solving this problem that they had presented 
to their students had little to do with the process that they had used to solve the 
problem for the first time, (2) they had confused the process used to solve 
exercises with the process used to solve problems, and (3) the description given 
above was an algorithm for solving similar questions that they had constructed 
after they had solved this problem. (Ibid.) 

To contrast exercise and problem Bodner poses a question that would give pause to most 

chemical researchers (Ibid.): 

 Design a synthesis for the following compound. 

 

For a similarly taxing problem in physics, consider the following4: 

An hourglass sits on a scale while sand flows from its upper to lower chambers. 
Does the scale register the net weight of the hourglass (housing + sand) or 
something else? What exactly does it measure? 

Bodner continues: 

While working the question given above, you undoubtedly spent a considerable 
amount of time on the stage Polya described as "understanding the problem." 
What is less certain is whether you went through a separate stage in which you 
devised a plan to solve this problem before carrying out the plan. The steps that 
many people go through while working a "problem" such as this might be 
represented more or less as follows. You began by reading the problem, perhaps 
more than once. You then wrote down what you hoped was the key information, 
reread the question or a part of the question, drew a picture to help represent the 
question, and then tried something. Then you tried something else, and looked at 
where this led you. By gradually exploring or playing with the question you got 
closer and closer to the answer. It's possible that you never fully "understood" the 
question until you had an answer. 

Here Bodner has captures the essence of problem solution. Yet this is not what happens in 

lectures: 

                                                        
4 Thanks to Dr. Jérémie Vinet of Marianopolis College for suggesting this problem. 
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If you compare this reconstruction of the steps many of us take while solving a 
problem with the description we all too often give our students of how we solved 
the problem, you may understand why I asked my TA's to stop lying to the 
students, and you may also understand the role of algorithms in solving exercises 
versus problems.”(Ibid, 514) 

Consider the description of standard problem-solving instruction: 

The most common approach involves exhibiting illustrative examples of problem 
solutions and then providing students with practice in solving similar problems. 
Occasionally some teachers suggest also a few helpful rules of thumb, while 
other teachers advocate predominantly student learning by independent 
discovery. (Reif 1981, 310) 

This author continues to decry the methodology: 

Such approaches are neither too effective nor efficient in furthering students’ 
learning of problem-solving skills, nor do such approaches lead to a cumulatively 
growing body of reliable knowledge about effective teaching methods. Indeed, 
teaching methods based predominantly on examples, practice and discovery are 
more primitive than those used in simpler domains (e.g. playing musical 
instruments or performing in sports) where many instructors use explicit teaching 
methods based on a systematic analysis of underlying component skills. (Ibid.) 

As one actively involved in sports and music I do object to the term “simple,” but that caveat 

aside it does seem to be the case that reducing to component skills is the basic bread and butter of 

teaching in these domains. Why, I wonder, do we shun this strategy in science education? In fact I 

feel we barely even alert students to the existence of such component skills.  

 

The Skills We Value, The Habits that Work 

the murder board 

When faced with a problem (as opposed to an exercise) researchers and graduate students in 

Science, either alone or with their peers, invariably move to a whiteboard (or blackboard) and 

begin sketching, graphing, gesturing and discussing. In my experience, when discussions begin 

seated the interlocutors invariably rise to the board and begin this multimodal communication, 

this core habit, a first-response maneuver that I term the murder board5 approach. At some point 

                                                        
5 Taken from crime investigation literature and films, the murder board is typically a vertical 
surface on which evidence and clues are displayed. The format of the items is multimodal: text, 
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in the discussion the particulars of the problem at hand are long forgotten, the problem has been 

translated through various stages of representation, finally distilled to an essential question 

physical theory—the crucial shift from the particular to the universal has occurred and the 

problem solution is nearly complete.  

 

 

The above photograph of a murder board6 demonstrates the type of messing about that occurs 

during problem solution: information and concepts are represented not as linear text or numbers 

and formulae to be processed algorithmically but rather by using multimodal resources: 

specialized diagrams, equations, text etc. Of course this work need not occur on a whiteboard—a 

scrap of paper will do.7 Once this problem solving has been brought to a successful close one can 

write a coherent solution. The lie discussed above is in presenting the coherent solution without 

                                                                                                                                                                     
photographs, sketches, arrows, etc. Invariably working the material on the board produces 
insights and eventually the solution to the problem (the crime). 
6 taken from http://cf.foreveryoungadult.com/_uploads/images/Pretty_Little_Liars_S04E03_ 
     KissThemGoodbye_net_0708.jpg 
7. . . the Einsteins were taken to the Mt. Wilson Observatory in California. Mrs. Einstein was 
particularly impressed by the giant telescope. 'What on Earth do they use it for?’ she asked. Her 
host explained that one of its chief purposes was to find out the shape of the Universe. "Oh", said 
Mrs. Einstein, "my husband does that on the back of an envelope. - Bennett Cerf in Try and Stop 
Me. 
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the intellectual work required to achieve lucidity, work done at the murder board. 

other habits 

I characterize the murder board activity as a habit, but it could just as well be termed a skill. 

Below is a partial list of similarly valued skills/habits in the sciences. 

§ The ability to provide coherent explanations and justifications using written language, 

mathematics, sketches and various other abstract representations (such as free-body diagrams, 

energy level diagrams, graphs, charts, tables, etc.). 

§ The ability to perceive and manipulate correspondences between these various modes of 

representation and use these correspondences as cues in problem solution. 

§ The recognition of problem types. That is, the ability to recognize the similarities in seemingly 

disparate problems, to reduce the plethora of end-of-chapter problems to a few exemplars, 

allowing us to more productively focus our intellectual efforts. 

§ The ability to transform a novel problem into one of these exemplars, hence reducing the 

problem to an exercise. 

§ The ability to get unstuck, to find one’s way out of a problem after initial failure. 

Some students do develop these crucial habits and skills independent of lecture and textbook 

presentation (in fact, most scientists fall into this category). These students have found efficient 

ways to organize their knowledge and integrate material presented throughout the course; to see 

not individual problems but classes of problems; to use physical concepts as their opening salvo 

in problem solution. Many other students not only have not developed these skills but also are 

scarcely aware of their existence: 

Common teaching practices usually pay far too little attention to issues of 
knowledge organization. Thus material is usually presented sequentially, chapter 
by chapter or lecture by lecture, so that students themselves must somehow try to 
integrate all this accumulating knowledge into a coherent organization 
facilitating flexible knowledge use. (The task of creating such an effective 
organization is a substantially difficult undertaking which most students are ill 
prepared to carry our without outside assistance.) Furthermore, arguments or 
problem solutions, presented in books or classrooms, are usually exhibited in the 
form of linear sequences of steps. Such a presentation may be impeccable from a 
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purely logical point of view. However, unlike a more hierarchical organization, it 
is not well designed to help students remember or apply such knowledge. (Reif 
1981, 316) 

The aim of my proposal is to alert students to the proven habits and skill sets of experts, to 

help them organize their knowledge in a way that benefits problem solution and overall 

comprehension and, crucially, to give them templates to communicate meaning in their solutions, 

all of this using narrative: “To turn a set of events into comprehensible discourse requires the act 

of narration,”8 what the literary scholar Hayden White calls the “solution to the problem of how 

to translate knowing into telling” (White 1981, 1) For me the transmission of meaning is 

paramount, a way of “telling” what we know and have learned in the course of our problem 

solution. 

 

My Proposal, In Brief 

. . . even mathematical proofs, with one step following another toward an 
inevitable conclusion, exhibit something of the dynamics of plot and closure.” 
(quoted in Branigan 1992, 12) 

In the Introduction I discussed the cognitive power of narratives, what is termed “the narrative 

effect.” I propose to draw on narratives in two manners, one seemingly superficial (yet useful), 

the other, I believe, more profound. 

the genre of crime fiction 

I liken the quintessentially scientific habit of messing about on a whiteboard to the unraveling 

of the sequence of events in a murder mystery, culminating in the climactic scene (in the classic 

Agatha Christie format) where the detective assembles the various participants in the drama and 

presents his or her solution: “The Butler did it in the garden with the kitchen knife.” A solution is 

not a mere chronicle (a list of events and dates), it is not meant to entertain (though it could), 

there is no need for poetic license: a solution should have the clarity, simplicity and full 

explanatory power of the detectives exposition—who, what, where, when and why (as required).  
                                                        

8 http://miriamposner.com/blog/history-narrative-and-the-body/ 



 22 

The murder board activity is the initial stage of problem solving, ending with a cogent 

statement of the solution in the solution-writing process. These two stages—solving the mystery 

and presenting the findings—provide a useful model to wean so-called novice problem solvers 

from their tendency to approach problems as they would exercises. But here I’m aiming for a 

more profound realization of the narrative effect in physics problem solution. 

theme, plot and motif in problem solution 

Detectives present the answer (the guilty party) but also meticulously retrace their reasoning to 

fully justify the conclusion as the solution to the crime (and also to fulfill certain literary 

requirements of closure). Similarly in science education at the post-secondary level we are 

interested not merely in the answer but rather more so in the method of solution and reasoning: in 

short, the solution—the what, where, when and, most importantly, why. We would like well-

written solutions that communicate ideas, and it is here, at a deeper, structural level that I wish to 

draw upon the seemingly universal communicative power of narratives. In problem solution the 

move from the particular (the problem at hand) to the universal (the physical principle at stake), 

the recognition of problem categories (to be discussed in detail below) brings to mind the 

distinctions between story, plot and—at a more fundamental level—theme. Deep analogy or not, I 

will argue that recognition of these narrative elements will stimulate and organize students’ 

efforts and ideas for problem solution. To this end I have selected terminology from literary 

studies which carries both many readily-available associated meanings and exemplars for 

students while remaining somewhat faithful to literary theory (where, at any rate, there seems to 

be no uniform consensus concerning definitions).  

Story 

§ This is the particular problem at hand. Consider the following: 

When jumping, a flea accelerates at an astounding 1000 m/s2, but over only the 
very short distance of 0.42 mm. If a flea jumps straight up, and if air resistance is 
neglected (a rather poor approximation in this situation), how high does the flea 
go? (Problem 2.47, from 2012, 66) 
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Theme 

§ Theme is the universal to the story’s particular, the physical principle at stake. There 

are only a handful of such principles in each course, listed in the table below for 

Introductory Mechanics. The above problem can be solved with one theme 

(Kinematics With Constant Acceleration) or two (Kinematics With Constant 

Acceleration and Conservation Of Mechanical Energy) 

Plot 

§ Plot refers to the organization of events or ideas, not of the literal problem (the story) 

but of the solution. There are a finite number of plot categories; the plot of the above 

example is a bipartite structure where the final state of part one becomes the initial 

state of part two. Students encounter this very plot structure throughout courses in 

mechanics, vibrations and waves, electricity and magnetism and introductory modern 

physics: in short, in physics. 

Motif 

§ Midway between deep structure (theme: Work/Conservation Of Mechanical Energy) 

and the superficial (story: block on an inclined plane), motifs are recurring particulars 

of physical or mathematical significance. In the flea jump example above the motif is 

what I term extrema (in this particular case, speed and kinetic energy are zero at 

maximum height). 

Below is a summary table of correspondences. 
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literary 
term literary definition examples physics examples 

story  

A particular 
realization of the 
plot. 
  
The temporally-
sequenced  events in 
a narrative. 

Particular 
realizations of 
the coming of 
age plot: 
Huckleberry 
Finn; Black 
Swan Green. 

The actual 
problem or the 
surface 
characteristics 
of the problem. 

The type of objects in the problem 
(inclined planes, pulleys, springs), the 
physical terms mentioned (friction, center 
of mass) or the relations among objects 
(block on an inclined plane). 
 

theme 
 

The central topic or 
concept (eg Hamlet: 
indecision) or what 
the story says about 
the topic (with great 
power comes great 
responsibility). 
 
There is often more 
than one theme in a 
story. 
 

 
love 
 
jealousy 
 
power 
corrupts 

Physical 
concepts or 
principles. 

Kinematics With Constant Acceleration 
Dynamics 

Inertia 
Newton’s Laws 
Torque 

Work/Conservation Of Mechanical Energy 
(I call this “Conservation of Energy . . . 
or Not”) 

Conservation Of Linear Momentum 
Conservation Of Angular Momentum 
 
Superposition/Interference (to name but 
one from another course) 

plot  

The organization of 
events that make up a 
story, how they are 
related, structured 
and interact with one 
another. 
 
e.g. Hamlet:  revenge 
 

quest 
 
triangle 
 
coming of age 

The structure of 
the written 
solution. 

bipartite (final state) part 2 = (initial state) part 

1 
flea jump example above 
ballistic pendulum (see below) 

difference  
e.g. interference generated by path 
difference, phase difference upon 
reflection 

change 
given either the final or initial state, 
find the other 

conservation  
determination of state at some instant 

(e.g. statics) 
constraints 

interacting objects (e.g. Newton’s 
Third Law) 

Problems in two dimensions yield two 
equations with two unknowns  
etc.  
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literary 
term literary definition examples physics examples 

motif 

A recurring object, 
concept or structure, 
something more 
concrete than theme. 

References to 
blood and 
water in 
Shakespeare’s 
play Macbeth. 
 
The green 
light in The 
Great Gatsby 

Concepts 
(weightlessness, 
extrema) 
 
Constraints 
(rope on pulley 
without 
slipping; within 
the visible 
range) 
 
Mathematical 
structure, 
methods or 
techniques  
 

equilibrium 
dividing two equations 
initial and final states 
symmetry 
extrema (what’s zero) 
proportionality (e.g. I ∝A2) 
various tricks of the trade (e.g. simplify 
problem or derive new information by 
running time backwards) 
geometry: e.g. location of pivot with 
respect to the centre of mass 

 

And where is narrative in all of this? In literature and film, possibly also music, narrative is the 

collection of all of the above devices, and more besides (characters, climax, narrator, etc.), used 

to transmit the particular story and the universal meanings, morals and emotions. Below are 

examples of these narrative elements in problem solution. 

a few examples 

Example 1. Interference in two dimensions 

• story: Consider two speakers separated by 40.0 cm and driven by the same oscillator. A 
listener is located 2.00 m directly in front of one speaker.  For which frequencies in the 
audible range (20.0 Hz—20.0 kHz) does the listener hear a maximal signal?  

 
• theme: superposition/interference 

• the narrative (a skeletal outline of the solution) 

• theme: waves generated in phase at the speakers may no longer be in phase for the 

listener 

• plot/motif: interference due to path difference 

For maxima in sound intensity set 
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Thus . 

• motif: two constraints (maxima, within the audible range) 

use the second constraint to find the set of allowable frequencies 

 

This is a type of solution we value, yielding an algebraic expression in terms of m before 

determining numeric values. Thus one can easily distinguish conceptual from arithmetic 

errors. 

Example 2. the ballistic pendulum9 

  

• story: There are many variations on this story: for example, one could be given the final height 

h at which the apparatus comes to rest and be asked to determine the initial speed v of the 

ball. 

• the narrative (a skeletal outline of the solution) 

This problem can only be solved by recognition of its bipartite structure: novice problem 

solvers are stymied by trying to find and then plug numbers into equations for the final 

height h. Recognition of the structure reduces the problem to two relatively 

straightforward exercises. 
                                                        

9 Diagram by Dr. Celine Lebel, Marianopolis College 
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• theme: Conservation of Linear Momentum, Conservation of Energy  

• plot/motif: bipartite structure, finalpart 1 = initialpart 2 (same as for the flea jump and untold 

other problems)  

Part 1: apply the principle of Conservation of Linear Momentum to the collision 

between the ball and the block 

Part 2: apply the Conservation of Mechanical Energy to the block/ball 

§ the final speed from part 1 become the initial speed for part 2  

 Here is another variation on this plot:  

A tennis ball, initially at rest, is struck so that it moves straight upward, to a 
maximum height of 5 m. Calculate the order of magnitude of the average force 
during the collision. The mass of a tennis ball is about 10 g and the duration of 
the collision between the racquet and the ball is 10-2 s. 

As will be seen in the next section, so-called expert problem solvers categorize according to deep 

structure, what I term theme. Such experts will look at the diagram below and quickly determine 

possible themes and recognize the bi- or tri-partite plot structure (depending upon the story).10 

 

How do experts so categorize, what skills distinguish the expert problem solver, and can these 

skills be taught? In the next section I present some results from Physics Education Research that 

address these questions. 

  

                                                        
10 Diagram by Dr. Celine Lebel, Marianopolis College 

M 
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3.  Problem Solving and Physics Education Research 

In short, beginning students perceive problem solving in physics as memorizing, recalling, and 
manipulating equations to get answers, whereas physicists perceive problem solving as applying 
a small number of central ideas across a wide range of problem-solving contexts. 11 

Leonard et al., Using qualitative problem solving strategies to highlight the role of 
conceptual knowledge in solving problems 

 

Expert-Novice Research 

The oft-quoted remark that “observations are theory laden” seems to me an apt way to 

summarize some of the most important results from what has come to be known as “expert-

novice” research: experts and novices read the same problem but see something quite different, 

and this difference is decidedly theory laden—experts perceive deep theoretical structure whereas 

novices see mostly superficial surface structures. In what follows an expert is taken to be a senior 

undergraduate or a graduate student in physics while a novice is a student in an introductory 

general physics course at the undergraduate level.  

In their seminal paper, Chi et. al. (1981) investigate differences between the manner in which 

expert and novice problem solvers categorize and represent physics problems, and the role of 

such categorization in problem solution. Since the following terms are variously deployed in the 

literature I will set forth the definitions I intend to use. 

§ problem representation: “a cognitive structure corresponding to a problem, constructed 

by a solver on the basis of his domain-related knowledge and its organization.”(Chi et al. 

1981, 122) For Reif a representation is a "redescription of any problem in terms of 

concepts provided by the knowledge base" (Reif 1979, 1). While other definitions abound 

all agree that a problem representation will include some or all of the following semantic 

components: 

o an initial state as set forth in the problem 

                                                        
11  Leonard et al. 1996, 1496 
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o the goal of the problem-solving operation 

o the allowable problem-solving operators 

o what are termed embellishments, inferences and abstractions 

§ category: a general problem type 

§ schema: a general problem type consisting of “interrelated sets of knowledge that unify 

superficially disparate problems by some underlying features” (Chi et al. 1981, 122). In 

other words, a schema is a category along with its associated knowledge, "the knowledge 

required to solve routinely a particular class of commonly occurring problems" (Reif 

1981, 314). Constructing a representation involves translation from the particular 

problem at hand to the more universal schema.  

§ categorization: this is the translation process mentioned above. 

Schema hails form cognitive psychology and has found its way into cognitive narratology to 

explain how we construct meaning from narrative: 

The notion of a schema is basic to much of cognitive psychology. A schema is an 
arrangement of knowledge already possessed by a perceiver that is used to 
predict and classify new sensory data. The assumption underlying this concept is 
simply that people’s knowledge is organized. (Branigan 1992, 13) 

The following diagram represents the processes implied by these definitions (really just a species 

of moving from the particular to the universal), though the actual cognitive sequence is more 

circular and iterative in nature: 

	
  

Chi cites various authors whose work demonstrates that the ease and fluency with which 

experts solve problems and deploy what is termed “intuition” is dependent upon the quality of the 

representation such solvers are capable of constructing (Hayes and Simon, 1976; Newell and 

Simon, 1972).  Experts quickly provide a tentative categorization, sometimes after reading merely 

particular 
problem schema 

 

 

 

problem 
representation 

categorization 
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the first phrase, and then elaborate a full representation only after a potential schema has been 

cued. Following the process of categorization, the schema invokes for the solver an entire 

associated knowledge base. The assumption is that differences between expert and novice 

representations lie in their skill (or lack thereof) in problem categorization: “much of expert 

power lies in the expert's ability to quickly establish correspondence between externally presented 

events and internal models for these events.” (Ibid. 123). 

Chi is interested not merely in the existence of schemata—or, I would say, the habit of 

problem categorization using schema—but rather how such categorization by problem solvers 

affects their ability to solve problems. The authors report the result of four studies designed to 

determine the following: 

§ studies 1 and 2: the categories used (Chi uses “imposed”) by experts and novices  

§ study 3: the knowledge that such categories evoke 

§ study 4: the features within a problem that cue users as to which schema to use (or, at any 

rate, use to begin problem solving)  

Let us consider these in turn. 

Study One: Problem Sorting By Category 

Experts (PhD students) and novices (undergraduates) were given 24 problems from standard 

undergraduate physics textbook, printed on 3”X5” cards, and asked to sort these according to 

method of solution. They were not allowed a pencil and thus could not actually solve the 

problem.12 The results indicate no overall qualitative differences between groups: both groups 

were able to consistently categorize (they did the exercise twice) into broadly four categories. 

What is interesting—and perhaps unexpected—is that the experts spent considerably more time to 

categorize (50% longer than novices) though on the second trial the experts, perhaps not 

unexpectedly, were faster than the novices. So now the important question: if they could both 
                                                        

12 One wonders if the experts, as with Master chess players, could not see several moves in 
advance and complete much of the solution in their head, which leads one to wonder if the results 
of this categorization exercise would be different with more advanced problems. 
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reliably categorize, on what bases were the categorizations made? 

The most important result form this study is the following: novices sort according to surface 

characteristics (story) while experts sort according to physical principles (theme).  

For example, novices attach great importance to the type of objects in the problem (inclined 

planes, pulleys, springs), the physical terms mentioned (friction, center of mass) or the relations 

among objects (block on an inclined plane). Experts, on the other hand, categorize according to 

“deep structure,” the underlying physical principles, the concepts at stake—what I call the theme: 

Newton’s Laws, Conservation of Energy, etc. The differences between expert and novice 

categorization becomes apparent when reading their brief verbal descriptions for each category, 

some examples of which are shown below (my table derived from student explanations, Ibid.126-

7). 

 

Two other conclusions from this study merit mention: 

§ The sets of expert and novice categories are exclusive—they have little or no overlap 

with each other. From this the authors conclude that the two groups are using different 

criteria to sort the problems.  

§ Experts see and categorize according to unity; novices, diversity. Experts use underlying 

principles to produce fewer categories where novices tend to see a great variety of 

different, dissimilar problems. I will address this issue in the conclusion when discussing 

conceptual economy. 

The implication for a narrative interpretation of the problem-solving process is quite clear: 

novice 
problems that have something rotating: 

angular speed 

blocks on inclined planes with 

angles 

expert conservation of energy 
these can be solved by using 

Newton’s Second Law 
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experts categorize according to themes; novices, story. 

Study Two: Sorting Problems with Surface Similarity 

This second study was designed to test one of the conclusions of the first, namely that experts 

categorize according to deep structure (theme) whereas novices categorize according to surface 

features (story). For this study problems were chosen that displayed the same surface structure 

but different deep structure, and the results confirmed expectations based upon the first 

experiment: experts grouped according to deep structure while novices did indeed group 

according to surface structure, regardless of differing deep structure. (Of course it is possible that 

during the solution process some novices could have noticed this and been able to correctly 

determine the deep structure, but this was not part of the study and one can only assume that such 

a novice would not for long remain a novice.) Intermediate-level problem solvers (upper-level 

undergraduates) did group by structure, but a grouping constrained by surface features (Ibid. 

133), suggesting to the authors an intermediate stage of comprehension and that, most 

importantly, with learning comes a “gradual release from dependence on the physical 

characteristics . . .” (Ibid. 134): in other words, they are learning to solve like an expert. 

After categorization the problem solver proceeds to the representation stage. A representation 

is the solver’s interpretation or understanding of the problem, “an internal cognitive structure 

constructed by a problem solver to "stand for" or model a problem” (Ibid. 144-5). Both novices 

and experts construct what Chi refers to as an “enriched internal representation” of the problem 

(ibid. 134), although the experts construct more fruitful representations that include idealized 

objects, concepts and constraints.  The authors rely upon the following taxonomy of 

representations (from McDermott and Larkin, 1978).  
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o stage 1: a literal representation containing relevant keywords 

o stage 2 (naïve): a naïve representation (i.e. sketch) of literal objects and their spatial 

relations, termed naïve since this can be done by someone lacking the knowledge to 

solve the problem. 

o stage 3 (scientific stage): idealized objects (point sources or bodies) and physical 

concepts (forces, momenta, energies), all of which relate to the method of solution. 

o stage 4: an algebraic expression of the problem and its final solution 

Obviously stages 2 and 3 are the most important for problem solution. By the time one arrives 

at stage 4 the problem has been reduced to an exercise. The novice-versus-expert predilections 

determined in Study One can be recast thus:   

Novices categorize problems at the naïve level (stage 2)—with some scientific elaboration (stage 

3)—whereas experts categorize according to similarities at the scientific level (stage3).  

 

This difference probably accounts for the longer time taken by experts to categorize: they 

process problems to a deeper level, but in so doing they have at hand what they believe to be the 

underlying physical principle, leading—one would assume—to a more timely and satisfactory 

conclusion of the problem-solving process. 

Study Three: Contents of The Schema 

What knowledge is accessed by the categories chosen by novice and experts? The authors 

selected twenty category labels from the expert and novice categorizations in Study One. The 

subjects were asked to (i) tell everything that they knew about problems from each category and 

(ii) how the problems might be solved. They were given three minutes for each category. Below 

are results from two subjects, one expert and one novice, for the category “inclined plane.” 

A glance at the novice hierarchy below (Ibid, 136) reveals that the initial focus is upon 

variables such as length and angle, then moving from a consideration of the plane’s surface 
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characteristics to Forces and, only at the end, the possibility of Conservation of Energy.  

 

 

 

In contrast the expert network below (Ibid. 137) reveals an immediate concern with physical 

principles. Two alternatives are mentioned at the beginning, and these both carry with them 

specific procedural knowledge and conditions of applicability of principles (in the dotted 

enclosure—basically an incipient solution). Only after identifying possible themes does the expert 

proceed to elaborate the surface features: these are certainly necessary for problem solution but 
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do not dictate the expert’s elaboration of the representation. 

The authors also parsed through responses using “production rules” (139), which are basically 

straightforward translations into sequences of if-then statements, what Greeno terms action 

schemata  (Greeno, 1980). None of the novice production rules contain any actions related to 

solution procedures whereas the experts’ are replete with solution procedures (Chi et al. 1981, 

140). 

In sum, this study demonstrates that categories invoke for experts a knowledge structure (schema) 

that includes potential methods of solution, whereas a novice schema invokes a few structural 

features, many surface features and no methods of solution. 

 

Study Four: Cuing Features 

So far we know that experts and novices categorize differently (surface versus deep 

structure), these categories invoke a schema used to erect and elaborate a problem representation, 

and this schema (for experts) provide methods of solution. The fourth study attempts to determine 

what problem features cue subjects’ selection among various categories and schema.  

The participants took part in a “think aloud” protocol whereby they were asked to read 

problems and say  

1. what basic approach they would take to problem solution, and  

2. state what features of the problem led to this choice (cuing features).   

Table 12 from the paper shows the first- and second-order features identified by an expert: (Ibid. 

144). (The three columns correspond to my theme, plot/motif and story.)  
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My table below summarizes the findings from this study. (Ibid. 142) 

 basic approach cuing features 

expert 

§ interpreted “basic approach”  to mean the 
physical principles used to solve a problem 
§ used the same terms to describe their 
basic solution approach as experts used in 
problem categorization 
§ near perfect agreement among all experts 
(not surprising since they are working at the 
thematic level) 

§ states and conditions of the physical 
situation not contained in the problem 
statement, hence termed second order 
o before and after 
o no external forces 

novice 
§ produced only vague procedural 
statements (such as “first figure out what’s 
happening”) or gave detailed equations to 
solve the problem 

§ literal terms from the problem itself (hence 
termed first order) that give rise to equations 
§ gravity, friction 
§ second order almost never used by novices 
§ no overlap in features mentioned by two 
groups 
§  

 

A further analysis of the think aloud data investigates the subjects’ protocols in constructing 

their problem representation. The following chart takes us in time through an expert reading of a 

problem. (Ibid. 146) 
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The first column contains literal segments from the problem and column 4 the thoughts of the 

expert after reading thus far in the problem. The second and third columns identify the second-

order features and principles the subject deduces from the problem segment. After reading the 

first phrase (“A block of mass M is dropped from a height x . . .” the expert has activated the 

“Conservation of Energy” schema (theme) and this in turn generates what the authors refer to as 

slots that guide the reader in establishing or rejecting this schema. Examples of slots (what I 

would call plot/motifs) are “before and after situations; given initial conditions.” The expert 

continues to read and translate literal features into first- and second-order problem features, all 

the while confirming the initial hypothesis of Conservation of Energy (expert selection of the 

principle is guided by second-order derived knowledge.). The final expert protocol includes a 

form of the equation that will no doubt be used in the solution.  
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The novice, by contrast, activates schema based on first-order literal cues: “dropping” cues 

gravity; “spring” cues Forces, etc. (chart below, Ibid. 148). The slots deal mainly with equations, 

and as can be seen in the example below the novice reliance on surface level (first-order) 

categorization led to inappropriate equations associated with the surface level only.  

 

 In sum, this last study demonstrates that expert selection of physical principle is based on 

second-order, derived knowledge; experts are cued not by words but rather by the signification of 

the words. Novices—always in contradistinction to experts—used literal first-order cues that 

could lead to an equation.  

 

Expert, Novice And Narrative 

One significant difference between experts and novices is the “structure” of their knowledge: 

experts have a large store of domain-specific knowledge, and this knowledge is richly 

interconnected and interrelated—it is organized to be useful. Novices, by contrast, have a sparse 

knowledge store with gaps, forming disconnected groupings around distinct topics. Experts 

structure their knowledge hierarchically, organized by fundamental principles; novices store 

theirs chronologically as it is learned. (Gerace and Beatty 2005, 3) Experts integrate multiple 

representations of ideas, whereas novices often have only one representation, or are unable to 

relate different representations. As a result, experts have good recall of their knowledge, and can 
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access whatever part is relevant for a problem, while novices have poor recall and don’t have 

access to a particular bit unless it is somehow cued—perhaps by a familiar, standard problem type 

that they have been drilled to associate it with.  

Expert-novice distinctions tend to be of the binary sort:  

Experts and novices . . . differ in their problem solving behaviors. Experts 
employ forward-looking concept-based strategies, whereas novices typically 
employ backward-looking means-ends techniques . . . Experts can think about 
and monitor their problem solving while engaged in it, but for novices, problem 
solving consumes all available mental resources. Finally, experts can and 
generally do check their answers via alternative methods, while novices usually 
have only one way to solve a problem. (Ibid. 3-4). 

In this extensive summary one recognizes in the expert habits many of the cognitive gains and 

efficiencies promised in the narrative effect discussed in the Introduction. Of course experts have 

not become so due to their diligent literary studies, or have they? In his article How Stories Make 

Us Smarter, David Hermann discusses how stories “provide important representational tools for 

humans—tools that facilitate a number of problem-solving activities.” (Herman 2003, 135) 

Hermann identifies five problem-solving activities that are supported by narrative tools, two of 

which are germane with respect to expert-novice studies. 

1. “chunking” experience into workable segments 

The knowledge of experts consists of a large number of interconnected elements 
that are stored and recalled as extended, coherent chunks of information 
organized around underlying principles in the domain. Experts use the structure 
of this knowledge to perceive and recognize underlying patterns and principles in 
problem situations . . . (Russel 1997, 950)  

. . . narrative affords representational tools for addressing the problem of how to 
chunk the ongoing stream of experience  into bounded, cognizable, and thus 
usable structures. Stories organize experience by enabling people to select from 
among the total set of sequentially and concurrently available inputs. (Herman, 
2003, 136) 

It is easy to recognize in these quotes the expert’s ability to categorize by problem type (by theme 

and plot)—the thousands of end-of-chapter problems become a handful of themes and plots. 

2. imputing causal relations between events 

Narrative can be construed as both reflecting and supporting a cognitive 
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predisposition to find causal links between entities, states, and events in a 
sequentially presented array. (Ibid. 137) 

Causal links between initial and final states, or between entities, is the very stuff of physics 

problem solution, and experts find such links at the thematic level, following second-order cues 

that give rise to equations, states and conditions of the physical situation not contained in the 

problem statement. Novices ignore possible causal links and rely instead upon literal terms from 

the problem itself (first-order cuing features) to activate an algebraic manipulation, working 

backward from the unknown quantity, “a general heuristic called means-end analysis, which is 

typically described as ‘plug and chug’.” (Maloney 2011, 10). 

getting unstuck 

It is fascinating to watch good students find their way out of a problem by probing by 

scribbling, sketching and adjusting their approach in response to derived knowledge (Study Four 

above). In contrast the novice reliance upon first-order cues means that, if stuck, they have 

exhausted their only resource and give up: “Experts have a variety of tactics for getting unstuck, 

but novices cannot generally get unstuck without outside help.” (Gerrace and Beatty 2005, 3-4) 

During the problem solution process one begins with a certain representation and works on that 

representation (and hence the choice of representation, or at any rate the ability to produce and 

elaborate a representation, is of the greatest import). But one must be ready to adjust to any 

problems or new information that challenge the initial interpretation. This iterative approach to 

problem solving is illustrated by expert think aloud protocols: experts reevaluate in light of new, 

derived second-order knowledge (knowledge which novices could not generate for themselves).  

The findings from cognitive narratology are similar: “unexpected information can cause a 

reorientation of the schema in order to reclaim the important from the superficial.” (Branigan 

1992, 16) Readers, like expert problem solvers, do not parse a narrative in a linear fashion: 

In short, it has been amply demonstrated through many psychological 
experiments that an individual’s attention does not spread equally through a 
narrative text but works forward and backward in an uneven manner in 
constructing large-scale, hierarchical patterns which represent a particular story 
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as an abstract grouping of knowledge based on an underlying schema. (Ibid.) 

And it is not merely a matter of parsing in both directions but of invoking one’s schema to 

generate and test expectations: 

. . . story comprehension involves the continuous generation of better-specified 
and more complicated expectations about what might be coming next and its 
place in a pattern. Thus the perceiver will strive to create “logical” connections 
among data in order to match the general categories of the schema. . . the “gist” 
of the narrative . . . uses a schema to automatically fill in any data that is deemed 
to be “missing” in the text. (Ibid. 15-16) 

 

From Novice To Expert: Problem-Solving Strategies  

As one author put it, “. . . relatively inexperienced physics students tend to plunge 

immediately into equations and, lacking any guiding plan, often get stuck in a morass of details 

without knowing what to do next.”(Reif, 312) One strategy (pun intended) for helping such 

students bridge the gap between novice and expert habits is to require that they articulate a 

solution strategy. A strategy is defined as a qualitative description consisting of three 

components, namely the what, why and how (which three terms certainly call to mind the 

climactic scene of murder mystery): 

§ state what major physical concepts or principles can be used to solve the problem 

§ justify (articulate) why these principle can be used 

§ describe how the principle or concept is used to arrive at a solution  

Below is an example of a problem with a strategy (Leonard et al. 1996, 1497): 
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For the authors strategies are a means of integrating conceptual knowledge with problem 

solving, and also provide opportunities to model for students “the type of concept-based, 

qualitative reasoning that is valued in our profession.” (Ibid. 1495) The problem that the authors 

address in this paper is a familiar one: 

. . . the way we model problem solving for students does little to alter their 
predisposition to focus on finding and manipulating equations . . . although we 
are usually careful to state verbally the principle or concept being applied to 
solve a problem, we often only write down the equations by which the principle 
is instantiated. . . (Ibid. 1496) 

So in fact our modeling reinforces student perception that “problem solving involves 
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manipulation and that principles are abstractions that bear little relevance to obtaining answers to 

problems.” (Ibid.) 

Below are examples of what the authors term A- and B-level strategies that could just as well 

be labeled expert and novice. 

 

The A-level strategies display all three components of a strategy (what, why and how), focus on 
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thematic material (the physical principles), were well written and in general correspond with our 

expectations vis-à-vis expert-novice studies. The B-level strategies also correspond well with 

expert-novice expectation, betraying a focus on literal features—such as the variables displayed 

in the drawing and the geometry—along with some rudimentary concepts of motion and a 

disposition to move directly toward algebraic manipulation to find the unknown. More 

importantly, one notices in the B-level strategy a dearth of major physical principles.  

To test the efficacy of strategy writing the authors studied two classes, one control class taught 

in the traditional fashion and the other taught with an emphasis on strategies—that is, integrating 

conceptual knowledge with problem solving. Those taught in the usual lecture style did not 

display any movement from novice to expert habits: “The control group continued to display 

novice habits and did best on questions where superficial features happened to match solution 

principle.” (Ibid. 1500) 

By contrast the results for the other class were encouraging: students taught with strategies 

selected the appropriate principle 50% more often than the control group, were found to be “less 

dependent on the surface features alone for selecting an appropriate principle” (Ibid. 1501) and 

demonstrated a greater recall of important physical concepts six to eleven months after the 

course. Thus the authors claim that novice students can indeed gain an appreciation for the value 

of thinking in terms of physical principles in solving problems.  

. . .  a modest effort to focus attention on the role that physics principles play in 
solving problems can help students retain the major ideas presented in a physics 
course months afterward.” (Ibid. 1502) 

Such a program requires effort on behalf of the teacher and student: separating strategy from 

solutions is not a simple task for many students, certainly one they would rather continue to avoid 

in favour of algebraic manipulation. But given that the authors marked strategies on the exam 

questions—and made it worth 13% of the grade for a given problem—students took the task 

seriously. (Ibid. 1498) 

Strategy writing appears to be a successful method for helping students to organize their 
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knowledge and problem-solving tactics (see also Gick 1986; Widmayer 2005), yet I find the 

exclusive reliance upon written language to be cumbersome and limiting. While scientific text 

does use written language it also relies heavily upon other modalities for communication and for 

what is termed meaning making. In the next section I survey the semiotics13 of scientific 

communication and propose my own narrative-based templates for problem solutions. 

                                                        
13 Briefly, semiotics is the study of signs and the meanings produced by various sign systems 
(either semantic or other formal structures).  
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4.  The Problem Solution: Constructing and Transmitting 
Meaning 

 
Experts and successful novices spent time using the external representations to make sense of the 
physics in the task, while unsuccessful novices seemed to draw pictures and free-body diagrams 
out of a sense of requirement14.  

David Maloney An Overview of Physics Education Research on Problem Solving 

 

The Language Of Science 

the language of science is multimodal 

The language of science is multimodal: we use graphs, tables, diagrams, equations and 

gestures to communicate meaning. Consider, for example, the phenomena of wave interference 

produced by passing light through a double-slit apparatus. To construct a problem representation 

one begins with a figure representing the actual physical apparatus (story) and then continues 

through a series of reductions designed to represent the thematic and motivic content: the 

following sequence can be found in almost any textbook presentation of the subject: 

1. A figure or sketch representing the physical situation (story level, figure (a) below). 

  

2. A reduction of the physical apparatus to a schematic (figure (b), both from Knight 2012, 

629). 

                                                        
14 Maloney 2011, 15. 
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3. A further reduction to reveal geometry and any applicable approximations (in this case 

the path difference for light traveling from the two slits and meeting at some point on the 

screen is found to be  d<<L). (Ibid. 630) 

  

4. Possibly a reduction illustrating wave interference at a point. (Serway 2004, 1179) 

  

At this point a statement of physical principle (rather than a geometric approximation) is 

appropriate: , for example, as the condition for constructive interference at point Q. 

5. A final schematic that allows for problem solution.  

   

Δr ≈ d sinθ

€ 

Δr = mλ
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This diagram may also include other relevant variables such as the slit widths and the wavelength 

of the source. Also included are the point P at which we are interested in the state of affairs 

(namely, is the interference constructive or destructive at that point) and some method of 

representing the interference pattern seen (or, at any rate, measured) on the screen. (The resulting 

interference pattern can be represented by a quick sketch of the intensity pattern, as it is above, or 

by using shaded and non-shaded regions, or merely alternating letters B and D to locate the bright 

and dark fringes.) 

What follows or accompanies the diagram(s) is a statement of the physical condition for either 

constructive or destructive interference: for destructive interference at the point P the path 

difference must satisfy the condition 

 

where the geometric expression for this path difference is given by 

. 

At this point one may proceed with an algebraic solution to many a problem.  

In textbook materials, articles or problem solutions information and concepts are 

communicated using pictorial, graphical and mathematical representations—the language of 

science is multimodal:  

The concepts of science . . . are semiotic hybrids, simultaneously and essentially 
verbal, mathematical, visual-graphical, and actional-operational . . . To do 
science, to talk science, to read and write science it is necessary to juggle and 
combine in various canonical ways verbal discourse, mathematical expression, 
graphical-visual representation, and motor operations in the world. (Lemke 1998, 
87) 

Students are at some level aware of the various multimodal meaning-making devices: lectures and 

textbooks offer frequent exposure to multimodal resources (see the highly effective chapter summary 

below (Knight 2012, 220)). 

Δr = (2m+1)
λ

2

Δr ≈ d sinθ
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meaning is transmitted by more than one modality 

The various modalities used are no mere shorthand for written language. Writing evolved with 

other modes of communication and what J. L. Lemke terms “meaning making:”  

In its efforts to describe the material interactions of people and things, natural 
science has been led away from an exclusive reliance on verbal language. It has 
tried to find ways to describe continuous change and co-variation, in addition to 
categorical difference and co-distribution. It has tried to describe what we know 
through our perceptual Gestalts and motor activities, to construct representations 
of the topological as well as the typological aspects of our being-in-the-world. 
Language, as a typologically oriented semiotic resource is unsurpassed as a tool 
for the formulation of difference and relationship, for the making of categorical 
distinctions. It is much poorer (though hardly bankrupt) in resources for 
formulating degree, quantity, gradation, continuous change, continuous co-
variation, non-integer ratio, varying proportionality, complex topological 
relations of relative nearness or connectedness, the interpenetration of different 
dimensionalities, or nonlinear relationships and dynamical emergence. (Ibid. 87) 

The vocabulary of science and the related concepts are simply not suited to verbal language: 

We can indicate modulation of speed or size, or complex relations of shape or 
relative position, far better with a gesture than we can with words, and we can let 
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that gesture leave a trace and become a visual-graphical representation that will 
sit still and let us re-examine it at our leisure. (Ibid.) 

Lemke surveys scientific articles and textbooks, detailing the frequency of non-verbal 

semiotic means such as graphs, tables, figures and equations. He finds that without the other 

modes the verbal text would make no sense, and that the content of the visual information cannot 

simply be replaced by verbal language: 

In most of the theoretical physics articles, the running verbal text would make no 
sense without the integrated mathematical equations, which could not in most 
cases be effectively paraphrased in natural language, even though they can be, 
and are normally meant to be read as if part of the verbal text (in terms of 
semantics, cohesion, and frequently grammar). (Ibid. 89) 

The paper from which this quote is taken is entitled Multiplying Meaning, by which title the 

author conveys the essence of his semiotic analysis: science requires several simultaneous forms 

of communication, these various forms contain information—that is, meaning—that could not 

otherwise be delivered, and the interaction among the various forms leads to a sum which is much 

greater than its parts: 

In multimedia genres, meanings made with each functional resource in each 
semiotic modality can modulate meanings of each kind in each other semiotic 
modality, thus multiplying the set of possible meanings [my italics] that can be 
made . . . (Ibid. 92) 

 

Consider the multiple representations used during a lecture presentation of acoustic beats.  

1. The phenomenon is demonstrated, usually using two amplified tuning forks. 

2. A visual analogy: Moiré Lines 

 a) Two identical wave front      b) interfering “in phase”      c) interfering p out of phase d) interference with f2=0.9ishf1 
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3. The equation for the superposition of two waves 

 

At this point I ask students if the above equations in any way resemble what was heard 

during the demonstration.
 

4. Application of a trigonometric identity simplifies the above expression: 

 

where  

 
I repeat the above question: Does this look like it could possibly represent was heard? 

5. The two terms of are graphed separately (using the 

frequencies of the tuning forks from demonstration—eg 284 Hz and 286 Hz), the graphs 

stacked one above the other to show a slowly-varying sinusoidal function (the envelope 

function with period , perceived in the demonstration as the alternation of loud and 

soft) and a rapidly varying function with period  (corresponding to the average 

frequency, the pitch perceived in the demonstration). 

6. Beneath these curves the graph of their product is shown (Knight 2012, 619): 

 

Again I ask the students if our new representation resembles what was heard, and by this 

point the answer for many is yes. 
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For attentive students—it is hoped—the interaction of the modalities in this sequenced 

presentation enhances understanding and learning in a way that a separate consideration of each 

could not: 

. . . I analyzed how science teachers and students made sense with each other by 
co-deploying verbal, gestural, and pictorial resources. I found that if we regard 
each of these as constituting a separate "channel" of communication, then 
sometimes the same or equivalent information passes nearly simultaneously in 
more than one channel, sometimes the information in the two channels is 
complementary, and sometimes information comes first in one channel, and later 
in another. It became very clear to me that the meanings that were being 
constructed were joint meanings produced in the intersection of different 
semiotic systems. While it was useful to analytically separate these into different 
"channels," there was also an underlying unity to the meanings produced. Their 
separation neglects this fundamental unity of communicative meaning-making 
which makes the co-ordination among channels not only possible, but normal. 
(Ibid. 94-5.) 

It is this coordination between modalities that may often be absent from the lecture hall, but most 

certainly from students’ written solutions. Before writing the solution, however, the problem must 

be solved. 

 

Constructing Meaning: Comprehension And Problem Solution At The Murder Board 
 

The coordination of modalities Lemke refers to in the previous quote is, I believe, crucial for 

the problem-solving process, for to achieve the clarity which is the solution one must construct 

meaning for oneself, and, as we have seen, meanings and concepts in science are multimodal. The 

expert habit that I would like to introduce to my students is the multimodal reasoning and 

exploration that occurs at the whiteboard, or on a piece of scrap paper, the back of an envelope, 

whatever. It is here that the real work of problem solution occurs, for to transmit meaning one 

must first construct that meaning. I know of no obvious algorithm to teach students how to 

proceed at the board: no doubt there is some iterative process of reading the questions, passing 

through various reductive diagrams (from story level to deeper plot and thematic structure), 

deriving second-order knowledge to guide their selection of theme, writing equations and 

gesturing:  
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When scientists think, talk, work, and teach they do not just use words; they 
gesture and move in imaginary visual spaces defined by graphical representations 
and simulations, which in turn have mathematical expressions that can also be 
integrated into speech. When scientists communicate in print they do not produce 
linear verbal text; they do not even limit their visual forms to the typographical. 
They do not present and organize information only verbally; they do not 
construct logical arguments in purely verbal form. They combine, interconnect, 
and integrate verbal text with mathematical expressions, quantitative graphs, 
information tables, abstract diagrams, maps, drawings, photographs, and a host of 
unique specialized visual genres seen nowhere else. (Ibid. 88) 

Consider a few of these “specialized visual genres” that are available for use in problem 

solution. 

Graphs 

When used in problem solutions graphs most often depict conceptual relations (linear or 

inverse variation, etc.) rather than actual data. The visual semiotic of graphs allows one to see 

functional dependencies:  “we apprehend the ‘patterns’ in the data when displayed as a graph 

differently than we do when it is displayed as text, or even as a Table.” (Ibid. 102) The following 

graph contrasts the asymptotic versus quadratic behaviors of kinetic energy in Newtonian and 

Relativistic physics: (Knight 2012, 1091). 

 

 

For students well versed in graphical techniques there is little need for textual explication of the 

graphs—the striking conflict between classical and relativistic theory (and experiment) is quite 

evident.  

Diagrams 
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A diagram is a visual sign (known more technically as an icon) that represents 
information concretely, and thus much more comprehensively, by highlighting or 
showing what the essential features of the problem are, generally in outline 
form.” (Danesi 2008, 4)  

The ability to perform successive reductions of diagrams is a critical competency for 

successful problem solution, one that involves deciphering correspondences between sets of signs 

and then representing them in a manner that allows one to determine solution strategies (see 

Danesi 2008, 10). (For example, as used in the double-slit example, or free-body diagrams in 

Mechanics.) 

Diagrams and graphs can be combined to convey a wealth of information.  The figure below 

(Figure 5.3, Lemke 1998, 103)—taken from a textbook on turbulence—is not described 

mathematically or textually (e.g. “temperature rises linearly with depth of fluid”), there is simply 

no need: a competent reader does not require such a verbal sequence.  

  

The horizontal dotted line integrates a graph with a diagram by means of common variable z, 

thereby linking a spatial variable with the visual representation. The relationship between 

temperature and position is represented as though it were a shape in space, something Lemke 

refers to as a “visual metaphor.” (Ibid. 104) 

 

Tables 
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It may seem that we rarely use tables in problem solution, but consider the following rather 

straightforward exercise and the method used to organize the information: 

Find the energy released in the following nuclear reaction.  (121.0 MeV) 
 

   

 
 

 

 

The net mass of both reactants and products are displayed (and calculated by students) in 

essential tabular form.  

examples: constructing meaning with various modalities 

Example 1. free-body diagrams 
 
 
 The quintessential representation for dynamics problems, the free-body diagram 

allows one to isolate each body in a problem and consider all forces acting on it without 

the distraction of other interacting objects (each of which will have diagrams of their 

own).  For me a free-body diagram can and should reveal something of the plot structure. 

Consider the following novice diagram: 

 

Is this the free-body diagram for a mass on an inclined plane or possibly a car turning on a 

banked road? To clarify the situation one can use any or all of the following semiotic devices: 

• sketch the direction of the acceleration 

• draw the coordinate axes that will be used 

• resolve the vectors into components along those axes 

m
i∑ m

i∑



 56 

• sketch the circular path (in the case of rotational motion)  

Thus the final free-body diagram for a car travelling in a circular path on a road banked at an 

angle θ: 

  

The following diagram presents a violent clash with most students’ intuition. Why is n>mg? 

  

Addition of several semiotics clarifies the situation: the body is moving in a circular path and thus 

there is a net radial force of magnitude n-mg. 

 

(Of course one must be careful not to make the diagram too busy—clarity is a virtue). 

From this last example we also see that one can convey physical principles (make meaning) by 

the relative size of the force vectors. In this example n > mg because the net force must be radial 

for an object moving in uniform circular motion. Requiring students to sketch the approximate 

size of their vectors (and modeling this for them) forces an intellectual engagement beyond 

novice habits.  

When two or more bodies are involved important thematic content (such as Newton’s Third 
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Law) can be conveyed by certain notational and diagrammatic conventions: one can (and indeed 

should) identify action-reaction pairs by subscripts (i.e. F12 and F21) and by somehow identifying 

the pairs on the diagram, for example by circling the two forces and connecting them by a dotted 

line between the two free-body diagrams.  

The following example illustrates the organizational power of a simple gesture.  

Example 2. gesture 
 
An object is placed 15 cm to the left of the optical apparatus shown below. 
Find the image location, type, attitude, magnification and image height for 
the combination below. 

 

Many students process the rays through the lens, reflect from the mirror and consider the 

problem finished, forgetting to send the ray back through the lens to the observer. A simple 

elaboration of this problem representation in the form of a gesture—a line tracing the path of a 

ray from the Object to the Observer—delineates the plot structure of the solution: 

 

It is now obvious that the ray must be processed 3 times (1. lens, 2. mirror, 3. lens) before 

reaching the observer: the plot is tripartite. 
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Example 3. a spatial representation 
 
You hear three beats per second when two pitches are generated. The frequency of 
one pitch is known to be 610 Hz. The frequency of the other pitch, pitch 2, is 
increased until you hear 2 beats per second. What is the new frequency of pitch 2? 
 

A. 608 Hz.  
B. 612 Hz. 
C. Either A or B. 

The following diagram helps students to organize their knowledge by translating a difference 

in frequency into more easily accessible spatial differences—it is a visual metaphor, and quite a 

useful one.  

  

From this point the solution easily follows: the frequencies of the two lines in the final state have 

been increased, as required by the question in the problem. The beat frequency is the difference 

between one of these and the 610-Hz sound—only the lower pitch will generate 2 beats/s:  

Generally speaking, successful problem solving involves the ability to decipher 
correspondences between sets of signs (and what they stand for), and 
representing them appropriately in order to grasp solution strategy. (Danesi 2008, 
10)) 

Example 4. ray diagrams 

Students are required to draw ray diagrams on assignments and evaluations—and receive 

credit for their proper construction—but need to be reminded of the utility of this particular 

diagrammatic representation in problem solution. The following example, solved without a 

diagram, quite often produces classic novice errors: 

The height of a real image formed by a curved mirror is four times the object’s 
height for s = +30.0 cm.  Find the radius of curvature for this mirror.  
 

The classic novice error in this problem is to write M= h’/h = 4 and proceed with a purely 

algebraic (and incorrect) solution. A quick sketch of a ray diagram alerts students to the fact that a 
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“real image” is inverted, and thus M = -4, not +4. The absence of a diagram and the consequent 

error well illustrates Lemke’s point about the crucial function of non-textual media:  

Visual figures in scientific text, and mathematical expressions also, are generally 
not redundant with the verbal Main Text information. They do not simply 
“illustrate” the verbal text, they add important or necessary information, they 
complement the Main Text, and in many cases they complete it. (Lemke 1998, 
105) 

This example raises another interesting point: students (and teachers) are too often lax about 

the algebraic conventions of sign: a positive should not be assumed; we should require its 

inclusion because sign (itself a multimodal semiotic device) carries meaning. Thus if forced to 

write M=+4 a student may think to verify that the image is indeed upright. 

concept questions: the ultimate multimodal arena 

The best students can answer challenging concept questions with their eyes closed—the best 

students barely require teaching. Many students attempt to answer conceptual questions by sheer 

mentation, and often fail. Solving concept questions often involves the determination of 

conceptual relations, and a well-wrought representation exposes the essential features of a 

problem. Sketches of graphs, free-body diagrams, ratios and physical gestures (think of the right-

hand rule) are the natural tools to solve all but the simplest of conceptual questions, as are 

manipulations of the appropriate formulae and diagrammatic annotations. 

Example 5. gesture 
 
A laser beam passing from medium 1 to medium 2 is refracted as shown. Which is 
true? 
 

A. n1 < n2. 

B. n1 > n2. 

C. There is not enough information to compare 

 (Knight 2012, QuickCheck 23.4 Slide 23-53) 
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For many students simply sketching a normal invokes a gestalt switch, and the answer is now 

obvious: 

 

 

 

 

 

Example 6. a change of axes 
 

  

 

Example 7. ranking tasks 
 
Rank the four situations below according to the power dissipated in the resistors, 
from least to greatest. (figure CQ31_06 Knight 2012, 914) 
 

 

The use of ratios translates this problem into a more manageable form: apply the formula 

 to each of the four options and compare the numerical factor multiplying , thus 

reducing the question to the following: “Rank the numbers 1 , 1/8 , 8 and 2.”  
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It is not always immediately apparent to students which modality to use: the murder board 

approach encourages them to solve the problem using several modalities. 

Example 8. If the average velocity of a particle over some time interval is zero can there be a 
nonzero acceleration during this interval? Justify your answer.15 

 

To justify their response students can sketch a parabola on an x versus t graph and show a 

horizontal secant (vav = slope of this secant = 0 m/s): 

   

or they could sketch a line on a v-t curve symmetric about the point v = 0 m/s and explain that for 

such motion vav = 0 m/s: 

  

 In both cases the students need label their graphs and state why a≠0 m/s2. 

Example 9. A fish inside a rectangular aquarium sees a dog that is standing 1.0 m in front of the 
aquarium glass. To the fish, the distance to the dog appears to be 

A. less than 1.0 m 
B. greater than 1.0 m 
C. equal to 1.0 m 

 
Here one may simply use the equation for refracting surfaces, or a sketch of image formation. 

While we may prefer the elegance and simplicity of a diagram showing the formation of a virtual 

image from the deflected rays, students generally prefer the equation and should be taught that 

using a second modality serves to verify the results of the equation. 

                                                        
15 I have found that the word “explain” can lead to exclusive verbal text (one student actually 
asked if she could use an equation to explain), whereas the word “justify” seems to indicate to 
students that they can use any combination of text, graphical relation, equation, sketch, etc. 
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Example 10. graphs are not just for labs 

Many concept questions rely upon graphical interpretation, requiring students to derive 

information using slopes, intercepts or the nature of the relations (linear, quadratic, exponential, 

etc). The graph could include several curves representing experimental data for the spring force 

(Fspring versus Δs), the photoelectric effect (Kmax versus f), or free fall (vy versus t), to name but 

three. We can cull information from the fact that lines have slopes of different magnitudes 

(different spring constants) or the same slope (the photoelectric effect and free fall) or from the 

vertical and horizontal intercepts. Students seem to expect to use graphical modalities in the 

laboratory (whether or not they comprehend the manipulations they are instructed to perform 

during the lab is another matter) but shy away from their use in problem solution, to their 

detriment, for often graphical modalities are required in problem solutions to both construct and 

transmit meaning. Which last term brings me to the next topic. 

 

Transmitting Meaning: (Re)Construction of Meaning by the Reader 

the tricks of the trade: annotation, punctuation and page layout 

Students construct meaning for themselves at the murder board—using the multimodal tools 

of the trade—during problem solution or when trying to understand a concept or method, be it in 

the textbook, the lecture hall or while writing their notes. They then transmit that meaning in their 

solution. But meaning is not just created and then delivered: the point of much semiotic analysis 

is to alert us to the role of the reader, and it is the reader who must construct meaning (and for 

student solutions the reader is the marker). A reader of scientific literature—and this is a key 

point—constructs meaning from all semiotics—both print and images—relying on the former as 

much as the latter.  

Important information is communicated to the reader at levels other than the usual graphics 

and text. Lemke’s analysis of scientific texts reveals three generalized semiotic functions for 

constructing meaning, namely presentational, orientational and organizational. The meaning of 
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scientific communication is carried not just by equations and charts, tables, graphs etc. but also by 

the choice of relative font size in titles, headings and labels, as well as the paragraph and section 

structure: “. . . geometric relations of figure space to caption space tell us which elements are to 

be preferentially read in relation to which other elements; what goes with what.” (Ibid. 95) 

One might assume the affect of such semiotics to be tertiary, at best. But in fact research 

reveals their import for cognitive processing: 

The effects of labeled illustrations on guiding attention is indicated by the 
illustrations group recalling more explanative than non-explanative information 
relative to the control groups in both Experiments 1 and 2. The effects of labeled 
illustrations on building connections is indicated by the illustration group 
outperforming the control groups on problem-solving transfer . . . Providing only 
pictures (without corresponding labels) or only labels (without corresponding 
pictures) did not allow students to build useful mental models of the system as 
indicated by problem solving transfer, whereas students given labeled 
illustrations performed much better . . . without a coherent diagram that 
integrated the information, students performed relatively poorly on problem-
solving transfer. These results help to clarify further Larkin and Simon's (1987, p. 
65) analysis of "why a diagram is (sometimes) worth a thousand words. (Mayer 
1989, 244) 

The meaning carried by labels etc. pertain not just to textbooks and solutions but also to the 

very problems that students are required to solve: 

. . . many advocate teaching learners metacognitive strategies designed to activate 
one’s schema before reading, such as reading heading and the title, looking a 
visuals in the text, and making predictions based on the title and pictures. . .  
(Widmayer 2005, 2) 

Students need to use such semiotics in their problem solutions. Imagine trying to read from an 

article or textbook with no formatting whatsoever: no bold or italics, no attention to the position 

and relative size of diagrams/text/figures/equations, no labeling or numbering of these, nothing: 

or, a novel without punctuation (well, it’s been done). Sadly this, plus an element of spatial 

disarray, is what many students submit as a solution. While we cannot expect from our students 

the sophistication of text setting used in textbooks and journal articles, we can teach them to use 

some of the more obvious semiotic tricks of the trade that allow readers (markers) to properly 

construe and construct their intended meaning. To this end I define the following three semiotic 
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categories: annotation, punctuation and page layout. 

§ annotation 

o The most important annotation is a brief statement of the theme at the outset of the solution. 

o Textbooks number equations and use those numbers as referents, and this students can easily 

do, post-murder board analysis. Note that given the time constraints of an exam, students 

must often punctuate on the fly, numbering a previously derived equation when they realize 

they would like to refer to it. 

Other examples of annotation: 

o brief descriptive labels for various sketches or graphical representations 

o an appropriate coordinate system, labeled 

o an indication of the direction of the acceleration or net force 

o arrows indicating quantities that take on certain values (usually 0, 1 or ∞)  

o appropriate connective statements between, for example, figure and graph, or (most 

often) equations and between interim results  

“and thus”,  “from equation # . . .” , “it follows that . . ..” etc 

§ punctuation 

o underline interim and box final results 

o bracketing or hierarchical indentation to indicate structure 

o bracketing when making  a substitution in equations, e.g. 

 

§ page layout 

For many problem types I find it best to split the page into two or three vertical columns. This 

may seem an obvious ploy, but not so to many students (else we would not encounter so many 

poorly-rendered solutions). Such a page layout works well for rendering the following: 

§ bipartite plot structures, regardless of the underlying theme or themes 

R = rN
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o one column for the first part, another for the second, with a clear indication of the transition 

between parts (e.g. final state of  part 1 becomes the initial state of part 2) 

§  conservation themes (initial and final states) 

§ Dynamics, Momentum and other problems involving vector quantities 

o the separate columns for the components serve to simplify the parsing of the meaning, 

and this for both the student and the teacher 

§ Dynamics problems with coupled motion of two or more objects (for example, 

block/pulley/string questions) 

 

examples of annotation, punctuation and page layout 

Example 1. Two blocks are connected over a light, frictionless pulley as shown below. The 
coefficients of friction between the inclined plane and the mass are µk and µs. 
Assume that the block on the inclined surface slides down that surface. Find an 
expression for the magnitude of the acceleration of the system in terms of the given 
variables and g. 

 

The problem-solving process for this question begins with free-body diagrams (a translation  
 
from story level to plot/thematic level) followed by statements of Newton’s Second Law for each mass:  

 

      F
x∑ =ma

x
F
y∑ =ma

y
F
y∑ =ma

y
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§ page layout 

The page is subdivided to separate the free-body diagrams and the attendant statements of 

Newton’s Laws for each object. Given the space restrictions of a portrait 8.5”x11” page students 

often subdivide into two rows rather than two columns. 

§ punctuation  

Underlining the statements of Newton’s Second Law as headings serves to organize the 

subsequent algebra: beneath these title headings one writes the algebraic equations that can 

essentially be read off of the corresponding free-body diagrams.  

§ annotation 

(Note that for clarity one should add the direction of the acceleration and the coordinate 

axes.)  

Mass m1, and only this mass, appears in the left-hand column; m2, the right. The normal, 

gravitational and friction forces must be given corresponding subscripts, n1, n2, fk1 and fk2 etc. A 

common novice error in this type of problem is simply to write, for example, fk in each column 

and then in subsequent algebraic manipulation treat all friction forces as the same quantities: both 

marker and student are uncertain as to which values are to be used in the determination of friction 

or the normal. (In a case where kinetic friction acts on both masses the normal forces used to 

determine friction are not the same, even if by coincidence they are numerically equal.)  
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Example 2. The previous example involved a “light” pulley. In the case of a massive pulley the 

following page layout could be used: 

 

          

 

§ page layout  

For dynamics problems involving interacting objects I subdivide the page into n columns, 

where n is of course the number of bodies. For problem solving purposes (see annotation below) 

I use the same left-to-right order for the free body diagrams as is found in the surface-level (story) 

diagram for the problem.  

§ annotation 

The left to right order of the free-body diagrams allows for a quick visual verification that the 

tensions have been properly labeled and that these internal forces, with the action-reaction pairs 

pointing in opposite direction, will indeed cancel when one sums the equations.  

§ punctuation  

As before, each statement of Newton’s Law functions as a heading under which the 

appropriate algebraic expression is formed.  
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Example 3. A 200-g puck, moving along a frictionless, horizontal table, has a velocity of 
 when it is struck by a second, identical puck. The two pucks stick together 

and move off with a velocity of . The duration of the collision is 

0.10s.  
a. Find the velocity of the second puck before the collision. 

b. What is the average force exerted on the first puck during the collision? 

A student solution is shown below. 

 

§ page layout and punctuation 

While I would prefer a layout of two columns for the x- and y-directions there is certainly no 

problem comprehending the organization of the solution for part a.: the punctuation and 

hierarchical indentation allow us to easily follow the proof. 

§ annotation 

This is where the student runs into trouble, in part b. Whether the student falls victim to 

sloppy labeling, or if the sloppy labeling is symptomatic of a conceptual weakness we can not 

say: are they using  or ? We don’t know and, apparently, neither do they. 
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Example 4. An object is launched with some initial speed. Find the maximum height of the 
object.  
 

There are of course innumerable variations on this problem that could include friction, the 

angle of an incline, a spring, etc.  

§ page layout and punctuation 

For any of these variations the solution begins with a statement of the theme: 

 

For the case where there are no external forces acting on the system a statement such as: 

In the absence of external forces,  

and then a restatement of the Conservation of Mechanical Energy, punctuated as a heading, to 

initiate the algebraic phase of the solution: 

 

§ annotation 

At this point novice students will want to write 

 

in the now-familiar headlong drive toward a numerical answer. I would rather that they use the 

modality of equations, with proper annotations, to communicate physical information thusly:  

 

where Kf = 0 J since the particle comes to rest at the maximum height 

    Ui = 0 J, taking the lowest point as the zero of potential energy 

Labeling of the initial and final states, the downward gesture to denote a quantity that is zero and 

the various annotations and punctuations all serve to transmit meaning to the marker, making it 

evident that the student understands this particular realization of the principle of the Conservation 

of Energy. Crucially for students this careful work allows them to organize their knowledge in a 

systematic way that may well cue them to the solution of more complex and demanding 
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problems.  

At this point one can proceed to insert (properly annotated) expressions for K and U: 

. 

 

Example 5. The following textbook solution shows a typical sequence of reductive diagrams 

involved in the problem-solving process (P6 .44 Knight, 2008, 6-29.)

 

Here we are asked to determine the initial speed required to carry a box of nails just to the 

edge of a roof, where it stops.  

§ page layout 

The first diagram (upper left-hand corner), at the story level, is a literal representation of the 

situation; the second (upper right-hand corner), a free-body diagram showing the direction of the 

acceleration and the required axes, is at the thematic level (Dynamics); the third diagram is also at 

the thematic level (lower left-hand corner, Kinematics With Constant Acceleration). The bipartite 

plot could have been made more transparent (revealed to the reader) by using a template showing 

second and third diagrams side-by-side, labeled in some fashion (such as 1. Dynamics and 2. 

Kinematics) that would allow the reader to almost instantaneously construct meaning: this is a 

bipartite problem, I know what to expect beneath each part, and so the entire solution (though not 

mgyf =
1
2
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2



 71 

the details) can be taken in as a whole.  

 

The Content Of The Form: Solution Template As A Global Semiotic 

The above “tricks of the trade” serve to expose the narrative. For the purpose of plot 

delineation I find page layout to be a crucial semiotic device: the global organization of content 

affects the manner in which the reader parses it. Of course this parsing (and meaning making) 

need not be linear: scientific texts, as opposed to spoken language, are not meant to be read 

according to some implied sequence: visual semiotics “. . . are at least two-dimensional and any 

one-dimensional sequence represented in two dimensions can be accessed at any point at any 

time.” (Ibid. 95) Scientists reading a report may jump from abstract to references, skim the tables 

and figures first, look at graphs, captions etc, and only then proceed to the main text: such “ . . . 

are the habits of expert readers, those who could themselves have written this text or one very like 

it.” (Ibid. 96) 

 Instructors are just such expert readers, and students need to keep their audience in mind: 

they need to be taught to format their solutions to allow for easy parsing by their instructor, 

solutions that communicate their conceptual grasp (or lack thereof) of the material at hand. Good 

student solutions can often be read as a gestalt16—the details of the solution can be taken in at a 

glance. How is this accomplished? I can often skim a solution and know that the student fully 

comprehends merely by the physical layout of the solution—the format of the page, the narrative 

that is rather explicit in the spatial hierarchy17. The spatial hierarchy of page layout is further 

adumbrated by punctuation and annotation—this is what I mean when I refer to “The Content Of 

The Form.”  

Taken together, the three semiotic devices of annotation, punctuation and page layout 
                                                        

16 Gestalt is German for form or shape, the idea being that with a glance we can comprehend that 
the student has correctly represented the problem—to mark the solution we need only check the 
algebraic details. 
17  The various levels of a hierarchy imply a logical sequence—a plot. For hierarchy as a species 
of narrative see Branigan 1992, 16. 
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constitute what I call the solution template. There are several advantages to teaching and 

modeling the use of templates: 

§ meaning making for the reader/marker 

o gestalt  

The entire solution can be taken in as a whole: we know at once that the solution is of the 

correct form (or not) and can proceed to check the algebra. 

o diagnostic 

The layout allows for quick recognition of student problems (is there a problem with the 

physical theory, the algebra or a numerical calculation).  

o marking 

If the student has chosen and states the incorrect theme then of course the marking 

process will be rather brief. Teachers generally penalize less for algebraic or numerical 

mistakes more for errors in physical reasoning. It is very easy to grade a well-wrought 

solution, correct or no. 

§ meaning making (conceptual clarity) for students 

o Templates explicitly privilege communication and help foster better intellectual 

organization and a meticulous attention to detail that many students sorely lack. 

o Templates encourage the forward-working habit of experts: a template really must begin 

with a statement of the theme (as experts do in their think-aloud protocols). 

o  Modeling templates in the lecture reinforces the physical concepts (the themes) and 

problem-solving techniques that we are most interested in teaching.  

o The main objective of a solution, as with written text, is communication, not merely 

finding the answer: solution templates are antithetical to the chug-and-plug heuristic. 

o While there can be no objection to a full statement of a problem solving strategy  (à la 

Leonard et al, 1996) the various semiotics in the solution template have here rendered 

such a lengthy written text all but unnecessary. 
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examples (continued) 

Below a single template is used to solve any number of bipartite problems where the final 

state of the first part of the question becomes the initial state of the second.  

 

Example 6. A 30-kg sack of rutabagas strikes a stationary, 60-kg ice skater.  After impact, the 
skater and rutabagas travel 10.0 m on the ice before coming to rest.  If µk = 0.50, 
find the initial horizontal speed of the offending tubers. 

 
§ page layout 

The page layout must show some explicit statement about the relationship between the final 

state of part one and the initial state of part two. There are a number of ways to accomplish this, 

but what I like about the following template is the vertical alignment between the various 

modalities (annotated sketch, parts I and II, the equations).   

 

Part I: Conservation Of Momentum  Part II: Conservation of Energy 

       finalpart I  =  initialpart II    

 

 

§ punctuation and annotation 

Underlining is de rigueur, but the most important semiotic functions are carried here by the 

annotations of the masses and the initial and final states. (Anecdote: As I edit this document a 

student studying for the final exam came to ask me about this very question. “I’m trying to find 

 


p f =


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vi. and am not sure what equation to use” Of course I responded that rather than searching for an 

equation he should be solving the problem, beginning with theme.) 

 

Example 7. The same solution template works well for the ballistic pendulum: 
 

 

One of many possible realizations of the page layout involves a reimagining of the sequence 

into three separate diagrams. 

 

 

Example 8. For more straightforward questions many students can and will just plunge in and 

begin solving. The following question is assigned before I have talked to students 

about solution templates: 

A javelin thrower standing at rest holds the center of the javelin behind her head, 
then accelerates it through a distance of 70 cm as she throws. She releases the 
javelin 2.0 m above the ground traveling at an angle of 30 degrees above the 
horizontal. . . In this throw, the javelin hits the ground 62m away. What was the 
acceleration of the javelin during the throw? Assume that it has a constant 
acceleration. (Knight 2012, 113) 
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The two student solutions given below betray a nascent grasp of solution templates.  

student solution 1 

 

§ page layout  

The bipartite nature of the solution is communicated by the student’s actional phrases 

“Looking for initial velocity of javelin” and “Solving for the acceleration.” There is no 

acknowledgment of the two different accelerations used in the two parts, but this is a satisfactory 

solution presented in a polished but nonetheless novice style where the idea of the solution is to 

find the answer rather than to communicate knowledge of physics. 

§ punctuation and annotation 

The minimal underlining and subscripts serve the student well in what is a fairly 

straightforward question. 

Student solution 2 
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§ page layout 
 

This student also uses two columns, for the x and y components, while dividing the page not 

according to physical theme but rather according to mathematical calculations. Again, for a 

relatively straighforward question such as this the strategy is successful: I understand what they 

are doing and need not invoke my knowledge of physics to fill in important gaps. 

 

Example 9. A textbook solution (supplied with Knight, 2012) 

The following is not included in the textbook but rather with the instructor resources. At any 

rate, it is meant for student consumption. 
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4.51.  Model:  Assuming constant acceleration allows us to use the kinematic equations. 
Visualize:  We apply the kinematic equations during the free-fall flight to find the 
velocity as the javelin left the hand. Then use  where  

 

Solve:  The range is  

 

 

Insert our new expression for  

 

Solve for  

This is the speed as the javelin leaves the hand. It now becomes  as we consider the 
time during the throw (as the hand accelerates it from rest). 

 

Assess:  This is a healthy acceleration, but what is required for a good throw. 
 

This solution features no diagram and little other than an implied template. One can ferret out 

the crucial statement of plot structure: 

“This is the speed as the javelin leaves the hand. It now becomes vf as we consider the 

time during the throw . . .”  

But one should not have to rummage around a solution (particularly from a pedagogical source) 

to construct meaning. This failing is no doubt in part due to the economics of textbook 

publishing. 
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Example 10. Consider another student solution to the second question presented in the 

introduction. 

 

§ page layout 

o There is no statement of the theme, but the page layout is exemplary. 

o Numbering (#1 and #2) splits the page into horizontal rows that correspond to different 

stages of the problem solution (#1 contains all of the physics, #2 the algebraic 

manipulation). I stress this distinction in class: clearly most of the marks are assigned to 

#1. Otherwise the student follows the solution template in our Example 1 above. 
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§ punctuation and annotation 

o progressive reduction of diagrams: some annotations on the story diagram, then free body 

diagrams with components resolved 

o the positive direction indicated at the pulley in the story diagram 

o correct labeling using subscripts  1 and 2 in the equations, the action reaction pair T (at 

this point in the course they are not aware that the tensions are in fact not action/reaction 

pairs), unfortunately not for the friction acting on mass 1 

o underlining of m1 and m2 to identity free body diagrams and the bipartite split of the 

page; underlining of the component statements of Newton’s Second Law 

o What is missing from the annotations are appropriate connective statements:  “and thus”,  

“from equation # . . .” , “it follows that . . ..” etc. 

 

I have modeled and taught the three components of solution template (annotation, page layout 

and punctuation), and it is gratifying to see students routinely use these resources to solve 

problems and, better yet, to innovate and find a solution to a difficult problem. 

 

The Need to Teach Multiliteracies 

translating between modalities 

Scientists know how to negotiate between the various modalities used in the scientific 

literature, students need to learn how to do this, and we assume that they do so through years of 

exercises using these modalities. But they are given no explicit instruction, learning from models 

in textbooks and lectures—a species of immersion, really—and such tacit learning is insufficient: 

Multiple representations are the tools that scientists use to construct new 
knowledge, solve problems, evaluate their work, and communicate. If we want 
our students to reason like scientists, we need to engage them in similar activities 
and convince them of the usefulness of representations. (Etkina & Van Heuvelen, 
2008, 25) 
 

At this point one could object that we already teach multimodal resources and do demand that 
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students use these (the most obvious example being the free-body diagram). The question is, Do 

students really comprehend the power and utility of the various modalities? Consider the 

deceptively simple notation used in chemical reaction, for example the symbol 3H2O. The 

numerals 2 and 3 deftly encompass two meanings, two levels of interpretation: the 3 quantifies at 

the macroscopic level while the 2 carries detailed information about molecular structure. When 

reading or balancing chemical equations, however, students can lose sight of these meanings, 

conflating the two numerals while interpreting the reactive processes implied by the semiotic “+” 

in chemical equations as an algebraic operator:  

. . . students might mistake the chemical symbols of H and O for mathematical 
variables such as X and Y and thus conceive the nature of chemical reactions as 
mere mathematical calculations. (Liu 2009, 136) 

Such conflation and reinterpretation can lead to serious conceptual difficulties in more advanced 

problems, so there are reasons for concern, even if students do properly balance chemical 

equations (see Liu 2009).  

Translation between various modalities, and knowing which modalities to use, are key 

problem-solving skills. I assign the following exercise every year and find that it faithfully 

exposes student weakness with multimodal representations. The problem (which in the textbook 

is labeled as a mere exercise) that defeats so many is simply to find the acceleration vector given 

the initial and final velocity vectors (Knight 2012, 120): 

  

Many students have difficulty comprehending just what information is being presented and are 

unable to translate from this representation to the more fertile one that uses equations: in other 

words, to interpret correctly the various modalities in the figure and translate the problem into a 
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straightforward algebraic exercise. Perhaps they are expecting a trajectory on the y versus x graph 

and are confused by its absence? When students come to my office to ask about this question (and 

they invariably do) I try to cue various solution templates by sketching a trajectory on the graph 

(any will do, as long as the velocity vectors at points 1 and 2 are tangent to this trajectory). If this 

simple gesture is insufficient I will ask them to write the initial and final velocity vectors and 

then, for weaker students, the components of these vectors. At this point all of the students can 

proceed to the answer.18 

constructing meaning  

Clearly for many students both comprehension of physical theory and the ability to solve 

problems is compromised by a lack of facility with the various modalities: 

. . . current research on multimodality in science education pays scant attention to 
how to help students develop the diversified illiteracies . . . there exists an 
unwarranted assumption that students already have a good command of 
multiliteracies. But the opposite seems to be true . . . even college students and 
secondary school science teachers have a limited understanding of chemical 
diagrams and symbolism, which necessitates explicit instructions on 
multiliteracies in science education. (Liu 2009, 129) 

Rare, it seems to me, is the student who fully utilizes the various modalities in problem 

solution, or is even aware of the conceptual richness and communicative power of these highly 

specialized symbols. They need to be taught how to use the meaning-making resources not 

merely to fulfill the professor’s demand to draw a diagram but as a means for communicating 

concepts. Consider again the case of chemical equations: 

It therefore follows that in order to improve multiliteracies in chemistry, 
symbolism (as well as other types of representations) would better be viewed as 
meaning making resources rather than conventionalized codes, and teachers need 
to develop explicit instructions on the meaning making patterns of chemical 
representations. (Liu 2009, 138) 

                                                        
18 A completely unnecessary confusion exists for some students because of the choice of numbers 
used in the problem: every year many students ask why it is that at x = 2000 m the x component 
reads 200 rather than 2000! These novice students are being miscued by surface features of the 
problem—there are more important issues to deal with here (multimodal translations) and this 
numerical distraction is naught than poor pedagogy, akin to using 22=4 as a first example when 
introducing exponents (the reasonable prediction of many young students is that 23=6) 
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When modeling solutions we need explicitly alert students this “meaning-making” function: it 

need come out from the tacit shadows and be explicitly integrated as part of the curriculum: 

When instructors use diagrams and other representations in the classroom, they 
should make their reasoning explicit so students can understand the underlying 
meaning associated with the specific features of these expressions and see how 
they function to support the solution of problems in chemistry. 

schemata and getting unstuck 

The third study of expert-novice categorization (Chi et al. 1981—discussed in Section 3 

above) set out to determine the content of the schema invoked by categories. In terms of narrative 

elements the schema (taken as synonymous with knowledge structure) is the theme plus possible 

solution templates. The structure of the solution templates is itself contingent upon plot and 

motif, and thus the complex knowledge structure that is the schema involves a richly organized 

(one hopes) web of theme, plot, motif and solution template. I repeat here my concluding remark 

to that third study:  

In sum, this study demonstrates that categories invoke for experts a knowledge 
structure (schema) that includes potential methods of solution, whereas a novice 
schema invokes a few structural features, many surface features and no methods 
of solution.  

The expert deployment of the various semiotic resources (diagrams, graphs etc.) at the murder 

board reveals—or at any rate suggests—plausible schema for problem solution: “Experts 

integrate multiple representations of ideas, whereas novices often have only one representation, or 

are unable to relate different representations.” (Gerace and Beatty 2005, 3) Playing around at the 

murder board with various modalities within solution templates cues experts to alternate schema, 

should their initial approach fail:  

. . . effectively representing and re-representing problems is an important 
problem-solving skill. And this skill includes being aware of the nature of 
representations and the possible need to re-represent a problem, especially if one 
is stuck and cannot identify the nature of the sticking point. (Maloney 2011, 14)  

But such crucial cues are only available to students who they have been alerted to their existence: 

as noted in one paper, novices “ . . .'flailed about' when stuck, whereas the experts proceeded 
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more systematically. (Kohl and Finkelstein 2007, 135). So we have yet another critical function 

of multimodal facility and another reason to give students explicit instruction in the multiple 

modes of representation and their manipulation in problem solution, namely as a means to cueing 

alternatives. 

transmitting meaning 

In their written solutions students need to make better use of the full array of multimodal tools 

and not rely solely (as so many do) on algebra alone to transmit meaning: 

Visual figures in scientific text, and mathematical expressions also, are generally 
not redundant with verbal main text information. They do not simply "illustrate" 
the verbal text, they add important or necessary information, they complement 
the main text, and in many cases they complete it. (Lemke 1998. 105) 

For Lemke it is not merely a matter of convenience or practicality:  

“. . . the different semiotic constructions that together and in relation to one 
another constitute "the concept" have nothing in common; there is no common 
denominator, and certainly no higher Platonic idea of which they are each pale 
shadows. It is in the nature of scientific concepts that they are semiotically 
multimodal . . . (Ibid. 111) 

How are multimodal representations to be taught? To begin with, as with most of the material 

presented in this paper, merely alerting students to their existence is a significant step. Below are 

some suggestions from chemistry that apply to any scientific discipline: 

The development of representational competence can be fostered by explicitly 
engaging students in the creation of various representations and in reflection on 
their meaning. Students should be encouraged to represent chemical problems 
and solutions in a variety of ways and comment on how the representations are 
equivalent, how they are different, and why one form may be better at expressing 
a problem or solution than another for a particular purpose. Working in pairs or 
groups, students should be encouraged to use various representations as they talk 
to each other about chemistry—to describe, explain, question, and discuss their 
understanding as it is expressed in a variety of forms—for this is what chemists 
do. (Kozma and Russell, 1997, 965) 

The authors suggestion a skill set that “might constitute the core of a substantive curriculum of 

representational competence in chemistry.” 

The ability to identify and analyze features of a particular representation (such as 
a peak on a coordinate graph) and patterns of features (such as the shape of a line 
in a graph) and use them as evidence to support claims or to explain, draw 
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inferences, and make predictions about relationships among chemical phenomena 
or concepts. 

The ability to transform one representation into another, to map features of one 
onto those of another, and to explain the relationship (such as mapping a peak on 
a graph with the end point of a reaction in a video and a maximum concentration 
in a molecular-level animation). 

The ability to generate or select an appropriate representation or set of 
representations to explain or warrant claims about relationships among chemical 
phenomena or concepts. 

The ability to explain why a particular representation or set of representations is 
more appropriate for a particular purpose than alternative representations. 

The ability to describe how different representations might say the same thing in 
different ways and how one representation might say something that cannot be 
said with another. (Kozma and Russell, 1997, 964) 

These skills require little if any translation or modification for the subject of physics. 

 

Concluding remarks 

The language of science used to both construct and transmit meaning is a multimodal 

language, and the various modalities are not redundant, indeed their co-deployment serves to 

create and multiply meaning within a scientific text. Use of appropriate multimodalities within 

schemata clarifies and organizes students’ knowledge and, more importantly, cues students to plot 

and thematic structure as well as the appropriate solution templates. For the marker student 

knowledge and intention are clearly revealed.  

Far too many student solutions feature equations and diagrams splayed about the page, and 

though I can often piece together the plot in so doing I am invoking my knowledge of physics, my 

abilities as a problem solver, my experience in structuring the narrative: we should rather be 

marking the students abilities. We make copious use of graphs and diagrams in lectures and 

should encourage students to co-deploy several semiotics to arrive at a solution (or, in the case of 

conceptual questions, an understanding). 
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A Parting Shot 

In the spirit of material presented in this section, I offer the following justification (without 

any accompanying verbal text) for the use of narrative elements in the mulimodal process of 

problem solution.19  

 

 

 

 

                                                        
19 http://trojantopher.files.wordpress.com/2013/01/periodic-table-of-storytelling.png 
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5.  Pedagogical Conclusion 

The enemy of reflection is the breakneck pace—the thousand pictures.20 

 Jerome Bruner, The Culture of Education 

 

Problem Solution in the Curriculum 

To paraphrase an old English proverb,21 a problem well presented is a problem well solved—it 

is not possible to decouple to two processes. In this essay I have used the term problem solution 

to refer to a process that begins with reading the problem and proceeds through the murder board 

investigation to the final explication that is the written solution. We use problems to teach 

concepts and evaluate student performance, but their value is far greater, for problem solving is 

the exemplary scientific activity: scientists spend the majority of their career not inventing new 

theories ex nihilo but rather in solving research problems. 

Problem solution is a central scientific activity, a vital skill that will remain with and enrich the 

intellectual life of our students long after they have forgotten much of the course content. We can 

and should use the physics curriculum as a vehicle for teaching this vital skill set. 

The crucial skills of essay writing and argumentation have long been a part of the Humanities 

curriculum—it should be so with Science. And whether or not a particular student remains in the 

Sciences (or Humanities) is of no import, for the essential skills of writing and problem solution 

transfer to any domain. 

                                                        
20 Bruner 1996, 129 

21 A problem shared is a problem halved. 
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Such curricular reform is not drastic and can be effected by a few additions and a change of 

emphasis, but for me it must begin with student cognizance: 

There exists a body of knowledge about problem solution and students should be made aware that 

such research exists; awareness is in and of itself empowering. 

The goal: student problem solutions, learning and knowledge organization that exhibit the expert 

habits detailed by Physics Education Research.  

We should alert students to expert habits (and the pitfalls of novice habits) and explicitly include 

instruction in these habits as part of the curriculum: fundamental skills should not remain tacit 

knowledge. 

 

Novice To Expert Progression 

Can expert habits and skills be taught? There is a robust literature showing that indeed they 

can, though for some skills the road from novice to expert is a long one: many characteristics 

once believed to reflect innate talent are actually the result of intense practice extended over a 

minimum of 10 years (Ericsson et al. 1993). But a change in pedagogy can make skill sets 

available to those who exhibit little or no native talent. 

Consider the skill of drawing. Some people have what seems to be an inborn talent for 

sketching: they can produce realistic or stylized sketches that transmit emotion, mood, etc, and 

have been able to do so for most of their lives. Contrast this to the majority who, like myself, 

seem to be capable of producing only childish scribbles. Can sketching be taught? Can someone 

like myself learn to see like an artist and to render my visions onto paper. The answer, according 

to the distinguished art educator Betty Edwards, is a resounding yes, but this answer came only 

after her initial frustration with the received pedagogy: 
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Unlike many art educators who believe that ability to draw well is dependent on 
inborn talent, I expected that all of the students would learn to draw. I was 
astonished by how difficult they found drawing, no matter how hard I tried to 
teach them and they tried to learn. I would often ask myself, “Why is it that these 
students, who I know are learning other skills, have so much trouble learning to 
draw something that is right in front of their eyes? I would sometimes quiz them, 
asking a student who was having difficulty drawing a still-life setup, "Can you 
see in the still-life here on the table that the orange is in front of the vase?" "Yes," 
replied the student, "I see that." "Well," I said, "in your drawing, you have the 
orange and the vase occupying the same space." The student answered, "Yes, I 
know. I didn't know how to draw that." "Well," I would say carefully, "you look 
at the still-life and you draw it as you see it." "I was looking at it," the student 
replied. "I just didn't know how to draw that." "Well," I would say, voice rising, 
"you just look at it..." The response would come, "I am looking at it,” . . . 
(Edwards 1999, XI) 

Of course when those proficient at drawing “look” they “see” something quite different from 

what a novice sees. After reflecting on her own habits as a talented artist—and a few chance 

encounters with cognitive theory and students copying pictures upside down—Edwards 

developed a methodology based on six basic skills (skills of seeing which are not reliant upon 

manual dexterity!) that has proven highly effective in teaching the art of drawing.  

Edward’s experiences mirror those discussed above in the section Problem Solving in the 

Lecture Hall: The Lie. I repeat here Reif’s summary of how we teach problem solution: 

The most common approach involves exhibiting illustrative examples of problem 
solutions and then providing students with practice in solving similar problems. 
Occasionally some teachers suggest also a few helpful rules of thumb, while 
other teachers advocate predominantly student learning by independent 
discovery. (Reif 1981, 310) 

If students persist in novice habits we essentially tell them to “just look at it” or “look harder” at 

the model solutions they have been shown. As with drawing so with problem solution: 

Such approaches are neither too effective nor efficient in furthering students’ 
learning of problem-solving skills, nor do such approaches lead to a cumulatively 
growing body of reliable knowledge about effective teaching methods. Indeed, 
teaching methods based predominantly on examples, practice and discovery are 
more primitive than those used in simpler domains (e.g. playing musical 
instruments or performing in sports) where many instructors use explicit teaching 
methods based on a systematic analysis of underlying component skills [my 
italics]. (Ibid.) 
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The Content of the Form: The Benefits of Narrative Problem Solution 

1. narrative problem solution as a means to expertise 
 

I am here advocating just such a “systematic analysis of component skills” by including the 

following in the curriculum: murder board analysis; the deployment of multimodal resources; 

solution templates and the narrative elements of theme, plot and motif. I must admit that I have 

been wary of explicitly teaching the narrative elements discussed in this essay—young students 

are too quick to cynicism. On the other hand when I do discuss solution templates toward the end 

of a one-semester Introductory Mechanics course I find the class to be unusually silent. Could it 

be rapt attention? I think so, and imagine that I do not delude myself, for the students want to do 

well in this course, mayhap feel overwhelmed by their studies and are grateful for such 

intellectual economies.  

During the closing weeks of the semester I present the five basic themes of the course and—

with a good problem in hand (e.g. the ballistic pendulum)—the recurring narrative elements of 

plot and motif and how they dictate the solution template (annotation, page layout and 

punctuation—yes, I use the mnemonic app). I find that I need not mention theme and plot as 

anything more than an analogy, though of course it is more than that. Rather I present, in the form 

of a course summary and review, a prescribed methodology for thinking one’s way through a 

problem, what I call  “thinking with a pencil:” 

2. constructing meaning at the murder board 
 
§ playing with representations and translations among various modalities 

§ progressive reduction of diagrams 

§ recognition of the various narrative elements: theme, plot and motif 

§ try out a theme  and see where it leads 

§ continue with an iterative process of extracting plot and theme from the story, playing 

with various multimodal representations, all of which invoke possible solution templates 

o allow the narrative elements (theme, plot and motif and solution template) to 
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dictate, or at any rate suggest, the method of solution 

3. transmitting meaning in a written solution 
 

Once a satisfactory solution has been reached at the murder board the first order of business 

is to state the theme, and not only—or even necessarily—using written text, as advocated by 

some (Leonard et al. 1996) but rather using a combination of modalities, most likely equation 

and text. Below is a list of the five themes from Introductory Mechanics (brief textual 

statements may accompany the equations).  

Kinematics With Constant Acceleration 
 the acceleration is constant we 

can use the kinematic equations 

Dynamics 
Inertia 
Newton’s Laws 
Torque 

 

 

Work/Conservation Of Mechanical Energy 

There are no external forces doing 
work on the system and 

 

Conservation Of Linear Momentum 

The net force on the system is zero, 
therefore linear momentum is conserved. 

 or  

 

Conservation Of Angular Momentum 

The net torque on the system is zero, 
therefore angular momentum is conserved. 
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One then employs the appropriate and necessary multimodal resources (most oft diagrams 

and equations) within the solution template (app) 

To novice students it seems that each problem dictates its own unique solution template, but 

really there are a limited number of constituent elements (table, graph, diagram, equation etc.) 

used in a finite number of solution templates, reflecting the limited number of themes, plots and 

motifs. Rather than face a seemingly unlimited number of possible problems within a course one 

has reduced the list to a handful of exemplars—this is conceptual economy. 

4. conceptual economy 
 

Kuhn introduced the idea of conceptual economy in his groundbreaking study The Copernican 

Revolution (Kuhn 1957, 37 et. seq.) as a means of characterizing the significant scientific 

achievement that was the Greek Two-Sphere conceptual scheme of the universe.22 The conceptual 

scheme is not just a theory but also the entire constellation of beliefs and commitments 

(psychological, religious/spiritual) that scientists bring to their discipline. There are various 

epistemological and ontological functions of conceptual schemes; here I consider the former as 

applied to pre-Hellenic astronomical knowledge. 

• the list 

Since the time of ancient Mesopotamian civilization humans had complied an impressive list 

of complex, seemingly unrelated astronomical phenomena. For example, the sunrise and 

sunset points move northward on the horizon during the summer, then southward during 

winter (that is, from Winter Solstice to Summer Solstice and back again).  

• the conceptual scheme replaces the list (conceptual economy) 

To one acquainted with its use, the model replaces the list of seemingly disparate 

observations, bringing to them order, coherence and meaning one with respect to the other—

the various observations have now become consequences of the conceptual scheme. For 

example, the seasonal drift in sunrise positions is seen as a consequence of the sun’s annual 
                                                        

22 A conceptual scheme is the precursor to Kuhn’s later paradigm. 
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sojourn around the ecliptic (a path which is tilted 23.5° with respect to the celestial equator). 

Thus the list need not be memorized: individual observations can be deduced from (are 

logical consequences of) the conceptual scheme.  

• explanation/understanding /confidence  

The scheme explains, allows one to understand the regularity of the heavenly motions. 

Scientists armed with a well-tooled conceptual scheme can avoid the “paralysis of the abyss”: 

the scheme tells them what to look for, where to look for it, and, for a given problem, even 

specifies the method of solution—would that all of our students could enter exams feeling so 

equipped. An adept can feel confident that the scheme, and one’s own problem-solving 

ingenuity, will eventually yield a result.  

the conceptual economies of narrative 

Conceptual economies are inherent in scientific theories. Recognition of the various narrative 

elements discussed in this essay gives students access to the conceptual economies practiced 

by experts in scientific research. 

• the list 

There are of the order of 100 exercises and problems at the end of each chapter in a standard 

undergraduate introductory physics textbook. 

• the conceptual scheme replaces the list (conceptual economy) 

As we have seen, experts see unity where novices see diversity. For experts the list is 

reduced to a small number of what Kuhn terms exemplars. Kuhn defines exemplars to be 

“concrete puzzle-solutions which, employed as models or examples, can replace explicit rules 

as a basis for the solution of the remaining puzzles of normal science.” (Kuhn 1970, 187) I 

think that all successful students have at some point made the critical intellectual transition 

that occurs when one realizes that there are but a handful of problems per course (exemplars), 

the remaining multitude mere variations on a theme.   

In the context of this investigation I take exemplars to consist of the entire narrative 
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structure: theme, plot, motif and corresponding solution template23. There are a limited 

number of themes and plots associated with each course. Moreover, the themes, plots and 

motifs serve to structure the presentation of the solution: that is, the global semiotic of 

solution template is theme and plot dependent. 

• confidence  

As with plot and theme, there are a limited number of solution templates that work quite well, 

with small modifications, for the vast majority of problems. Students who have a limited 

number of templates at hand—and are aware of the limited number of plots and themes—can 

enter an examination with what Mark Twain referred to as “the serene confidence of a 

Christian holding four aces.” 24  

The narrative elements provide a framework for knowledge and mathematical skills to 

operate: it’s like giving students a fully-structured essay outline, allowing them to properly 

focus their intellectual efforts. There is no need to “reinvent the wheel” with each problem, to 

face the abyss of an empty page. Composers (before modernity became all the rage) were 

quite content to pour their creative energies into the well-defined mold that was musical form 

(or style): rather than facing a blank score, Bach or Webern knew quite well what a fugue 

entailed and what harmonic and melodic language they would deploy within that style, etc. 

Similarly, there is a tremendous freedom of expression available within the rather rigid 

constraints of the 12-bar blues genre. And it is within the conventions of a genre that many 

students need to be, for too often novices seem to face the paralysis of the abyss (the void, 

having no idea where to begin) or of the plenum (the seemingly thousands of unique 

problems, Bruner’s “breakneck pace—the thousand pictures”). 

explanation/understanding  

As to the functions of explanation and understanding, expert problem solvers have a better 
                                                        

23 There is currently a lively discussion interpreting Kuhn’s historiography of science in light of 
recent developments in cognitive theory, such as schema theory. See, for example, Nickles 2003. 
24 attributed 
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grasp of physical theory (referred to in the literature as “domain knowledge”) and know the 

utility and applicability of the various themes in problem solving. Novice students can only 

come to understand physical principles if they attempt to integrate them within a knowledge 

structure (a schema): narrative problem solution provides that structure. The narrative 

elements offer them a means (forces them, really) to access expert-level habits and to develop 

a conceptual understanding of the subject matter. 

5. various other benefits of teaching narrative problem solutions 
 
Pedagogy 

• focuses pedagogy on the intellectual habits that we value and the fundamental role of 
conceptual knowledge in problem solution 

• privileges communication of ideas (concepts) over results, and thus emphasizes the 
teaching of concepts 

• provides for a systematic terminology to allow teachers and students to communicate 
about problem solutions, pedagogy and marking rubrics, and for student use to reflect on 
their own practices 

• problem solution at the murder board—this is what scientists do, not just students, so we 
are in fact modeling scientific research 

 
Diagnostics 

• formal clarity can help reveal student misconceptions to the marker and, more 
importantly, to the student during the exam  

o many students are not really certain how to check their own solution. The 
solution template allows them to attend to details such as signs, units, errors in 
transcription, etc.  

o Experts are not just intelligent, they are careful, and the solution templates 
remind students of this important habit of successful scientists. 

o for teachers, such clarity allows us to see explicitly (rather than inferring, often 
incorrectly) student problem-solution procedures; how students understand 
conceptual knowledge and how it applies to problem solution 
 

organization of, and reflection on, knowledge structures 

• It is easier to digest new knowledge delivered in lectures when one has an effective tool 
for knowledge organization: “facts cling to a narrative.” 

The task of creating such an effective organization is a substantially difficult 
undertaking which most students are ill prepared to carry our without outside 
assistance. (Reif 1981, 316) 

. . students tend to have one of two perspectives on learning physics: they either 
focus on getting the answer, or they work to have the physics make sense . . . 
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sense-making and incorporating the understanding gained from doing so when 
solving a new problem leads to expertise. In contrast, focusing only on getting an 
answer leads to a restricted set of procedural skills. (Maloney 2011, 8).  

An individual’s problem solving ability depends strongly on the organization, not 
just the extent, of her knowledge store. (Gerace and Beatty 2005, 5) 

• increased retention: We remember and discuss stories not at the surface but deeper levels: 
it is easier to recall the general theme and plot structure of a narrative rather than the 
details of story. It is hoped that such an effect will obtain for narrative problem solutions. 

It requires great effort to recall the exact words used in a novel or the exact 
sequence of shots, angles, lighting, etc. used in a film. . . When we say we 
remember a film . . . when we speak of comprehending something, we mean that 
our knowledge of it may be stated in several equivalent ways; that is, our 
knowledge has achieved a certain independence from the initial stimuli. 
(Branigan 15) 

organization of, and reflection on, study habits and exam preparation 

• promotes more efficient and active study habits 
• tests and exams are time limited, best to walk in with a few aces up your sleeve 
• clarifies for students expectations in marking (more on marking rubrics below) 

 
 

Pedagogical Varia 

The multimodal language of science 

We need explicitly teach how various modalities are co-deployed in problem solution to both 

construct and transmit meaning. There is too much tacit knowledge in science education—we 

miss important opportunities to transmit knowledge. A few evidentiary quotes: 

. . . any definition or principle should be accompanied by the learning of 
significant ancillary knowledge (including skills of symbol interpretation) so that 
any such definition or principle can be flexibly used."(Reif 1981, 314) 

. . . many advocate teaching learners metacognitive strategies designed to activate 
one’s schema before reading, such as reading heading and the title, looking a 
visuals in the text, and making predictions based on the title and pictures” 
(Widmayer 2005, 2) 

If students are asked on an exam to represent a situation in multiple ways without 
solving for a particular quantity, they will understand that the ability to re-
express concepts has value. Another way to achieve the same goal is to provide 
students with problems that are difficult to solve without representing the 
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situation in multiple ways (Etkina & Van Heuvelen 2008, 25) 

conceptual questions 

Multiple choice concept questions should be approached in a manner no different from problems. 

Their solution requires students to employ the full arsenal of scientific problem solving skills: 

pure mentation is insufficient. 

the murder board 

 

§ Physical layout of classrooms: one of our physics labs has white boards on three of the 

four walls. Students solve problems at the board in small groups of 2-3. I circulate with 

coloured markers and help annotate, punctuate, cajole, hint, correct etc. The students 

have found this to be a highly productive use of time, and in the past several have bought 

whiteboards for their home. 

§ During lectures we should model realistic problem solving at the murder board, making 

mistakes, mucking around, modeling getting stuck and unstuck, talking about this 
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(anecdote about good/poor student, determined what error he made, will never make the 

error again—good students make fewer errors but more mistakes) write, scribble 

sideways, erase, start again etc. 

§ When solving a problem on board I often (and not always intentionally) make mistakes to 

model getting unstuck. Often on board or iPad (they see projected image) I write 

sideways, a way of decoupling my thinking on paper process from the writing of the 

solution. 

marking rubrics 

Clear statements of theme and a well-wrought solution template ease the marking process, 

also making it more effective. Students can be given the marks they deserve, based upon what 

they know and how they communicate this, not merely the result of a calculation (at any rate 

a correct solution is can often be based upon faulty theory) 

Ability to provide lucid, logical explanations is highly valued in our profession . . 
. Basing student grades solely on problem-solving performance is tantamount to 
evaluating only a subset of skills that we value in our peers. (Leonard et al. 1996, 
1502) 

§ We should only “make meaning” with what is presented to us on the page and never 

invoke our knowledge to fill in the gaps 

§ teach it, insist that they use it, mark it—they will take it seriously 

. . . faculty often have difficulty following through on assigning low scores to 
students’ solutions that do not contain explicit communication of component 
processes such as a diagram if the “answer” is correct. In addition, instructors 
have a tendency to assume, if the answer is present, that students have used 
appropriate reasoning or processes even if the students do not communicate the 
processes and reasoning they employed. Maloney 2011, 22) 

§ In an unguarded moment during a lecture I actually said, “It’s not what you know, it’s 

what you show.” Rather embarrassing really, but it was all very spontaneous—I noticed 

several students writing it down. 

§ Assign marks for correct identification of theme (most teachers probably do this) but also 
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for correct identification of other narrative features (plot, motif) and app. 

§ The distinction between reader and writer is important: teachers are readers of student 

texts, and we need to know that students understand and are not blindly plunging into 

algebraic problem solving (as in the first student example given in the Introduction). 

§ We should not reward students for relying upon novice habits. For example, novices 

often begin a solution to interference problems with an algebraic statement that conflates 

geometry ( ) and physics ( ) in shortcut to numerical answer: 

  . 
 
 Rather we should insist on a full problem solution, something like the following: 

  For a maximum  
   
  where  
 and thus 
  . 

Students accustomed to this fuller solution statement will be more likely to solve the 

following: 

 In a double-slit apparatus with light of wavelength 600 nm, how much farther is it to the 

third maximum above the central axis as measured from the bottom rather than the top 

slit? 

No geometric approximation is required, the problem is one purely of interference 

(theme) generated by path difference (plot): 

  
  where m = 3. 

 
 
§ deduct marks even if the solution is numerically correct: 

 
§ e.g. 1 A mass attached to string ascends with a constant velocity. The statement of 

Newton’s Second Law must convey information (the fact that a = 0) 

Δr ≈ d sinθ Δr =mλ

d sinθ =mλ

Δr =mλ

Δr ≈ d sinθ

d sinθ =mλ

Δr =mλ
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§ e.g. 2 Consider the equation for image formation by refracting surfaces:         

  

A full problem solution, even to a simple plug-and-chug exercise, must specify the 

sign of R: when substituting numbers into the right-hand side of the equation experts 

will communicate their understanding:   

 =(1-1.5)/(-3)   

Novices will simplify on the fly—they are only concerned with the numerical 

answer:   

=0.5/3 

 
 

One Last Parting Shot: aesthetics and explanation 

It has been said that poetry reminds us of the value of lingering. I well recall a lecture in 

Group Theory when, having completed a proof of one of the Sylow Theorems, the teacher 

stepped back from the board and sighed. In fact we all did, for the proof was a thing of beauty. 

The opportunities for such lingering are rare and most likely cannot be contrived—we should 

seize them when they occur. To one so inclined the precise and powerful language of science 

affords such opportunities. Consider the derivation of the law of refraction using Fermat’s 

Principle: 

You could validly argue that the minimum formulation is neat, but really no 
better than the other formulation. However, move from this lecture room to your 
bathtub and observe your big toe in the water. Your limbs no longer appear 
straight because the velocity of light in water differs from that in air. The least-
time principle tells you how to formulate behaviour under such conditions and 
the memorizing of Snell’s Law about angles does not. Who can doubt which is 
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the better scientific explanation25?  

Good solutions are aesthetically pleasing, and we do value beauty and simplicity in 

mathematics and physical theories (Occam's Razor): 

The research worker, in his effort to express the fundamental laws of Nature in 
mathematical form, should strive mainly for mathematical beauty.  It often 
happens that the requirements of simplicity and beauty are the same, but where 
they clash the latter must take precedence. (Dirac 1939, 122) 

explanation: appropriate choice of theme  

The outer equilateral triangle in the diagram below has an area of 1 unit.  

 

There are two methods to determine the area of the shaded equilateral triangles (an infinite array 

of inverted triangles inscribed such that their vertices bisect the sides of the larger triangle in 

which they are inscribed). I gave this example to students at a high school for the gifted: the grade 

12 class dutifully and correctly summed the infinite series, as they had been taught to do. The 

grade 7 class had been spared instruction in series and so took to lateral thought—literally. 

Several students saw at once that along each row 1 in 3 triangles is shaded, and thus the total area 

of the inverted triangles is 1/3. Nice! 

                                                        
25 Paul A. Samuelson, Maximum Principles In Analytical Economics Massachusetts Institute of 
Technology, Cambridge, Massachusetts Nobel Memorial Lecture, December 11, 1970. 
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